

Forecasting Soiling-Related O&M Costs for Concentrating Solar Power Tower Plants

Presented by: Alex Zolan¹, Giovanni Picotti² ¹National Renewable Energy Laboratory; ²Queensland University of Technology

July 16, 2024 • ASME 2024 Energy Sustainability Conference

NREL | 2

Motivation O&M Cost Forecasting Progress Soiling Studies and Database

This talk focuses on work supporting the Technoeonomic Analysis (TEA) task within HelioCon

Heliostat Consortium (HelioCon) Objectives

- Form U.S. centers of excellence focused on heliostat technologies to restore U.S. leadership
- Develop strategic core validation and modeling capabilities and infrastructure at DOE's national labs (NREL and Sandia)
- Promote workforce development by integrating academia, industry, and all stakeholders

Image source: <u>https://heliocon.org/about/about_heliocon.html</u>

We attempt to address a TEA gap addressed in the HelioCon Roadmap Study

- Identified TEA gaps:
 - Lack of a validated model for:
 - solar field O&M costs
 - high-temperature IPH applications
- Path forward:
 - Develop a heliostat field O&M model that accounts for the cost of mirror washing and heliostat repairs and replacements, and their impact on heliostat field performance.
 - Develop a CSP model that creates and incorporates correlations for tower and receiver costs for IPH applications.
 - Coordinate work with other HelioCon topics, perform sensitivity analysis in models, and engage industry to improve knowledge gaps.

Schematic of a CSP plant; our analysis is restricted to the solar field, tower and receiver encircled above. Image source: Cox et al. (2023)

1 Motivation

2 O&M Cost Forecasting Progress

3 Soiling Studies and Database

Literature Review

- <u>Soiling</u>
 - Sarver et al. (2013): Arid and windy locations are subject to efficiency losses as high as 10% per day for a horizontal surface
- Improving operations
 - Wolferstetter et al. (2018): Methodologies for PV and parabolic trough plants
 - Clean the solar field with optimal frequency
 - Clean the solar field when reflectance falls below a threshold
 - Assign temporary crews when needed
 - Alon et al. (2014): Wash rate is maximized by optimizing routing
 - Ashley et al. (2018): Optimize short-term routing for two vehicles, which is consistent over the year
 - Zolan and Mehos (2022): Determine economics of extra vehicles on call for dust storms
 - Cholette et al. (2023): Determine staffing levels using stochastic soiling model

Our goal: Optimize, for the life of the plant, the number and type of wash vehicles to use, and the assignment of those vehicles to heliostats.

Mixed-integer nonlinear program: Objective

(\mathcal{W}) Formulation

Revenue losses due to soiling

- Costs of crews, including labor and wash materials
- Costs of vehicles over operating horizon

 $\forall f \in \mathcal{F}, t \in \mathcal{T}$ (1a)

 $\forall v \in \mathcal{V}, t \in \mathcal{T}$ (1b)

 $\forall v \in \hat{\mathcal{V}}_f, f \in \mathcal{F}, t \in \mathcal{T}$ (1c) $X_{vft} \leq W_{vt}$ $W_{vt} \leq P_v$ $\forall v \in \mathcal{V}, t \in \mathcal{T}$ (1d) $\forall v \in \mathcal{V}, t \in \mathcal{T}$ (1e) $P_v \in \{0, 1\}$ $\forall v \in \mathcal{V} \ (1f)$ $W_{vt} \in \{0, 1\}$ $\forall v \in \mathcal{V}, t \in \mathcal{T}$ (1g) $\forall v \in \hat{\mathcal{V}}_f, f \in \mathcal{F}, t \in \mathcal{T}.$ (1h) $X_{vft} \in \{0, 1\}$

Each solar field section must be assigned to one truck in each period

conceptual design components

 $\sum X_{vft} = 1$

 $E_{vt} = \sum \tau_{vf} \cdot X_{vft}$

 $f \in \hat{\mathcal{F}}_v$

 $v \in \hat{\mathcal{V}}_f$

 $E_{vt} > 0$

subject to

integration

mass production

NREL 9

subject to

$$\sum_{v \in \hat{\mathcal{V}}_{f}} X_{vft} = 1 \qquad \forall f \in \mathcal{F}, t \in \mathcal{T} \text{ (1a)}$$

$$E_{vt} = \sum_{f \in \hat{\mathcal{F}}_{v}} \tau_{vf} \cdot X_{vft} \qquad \forall v \in \mathcal{V}, t \in \mathcal{T} \text{ (1b)}$$

$$X_{vft} \leq W_{vt} \qquad \forall v \in \hat{\mathcal{V}}_{f}, f \in \mathcal{F}, t \in \mathcal{T} \text{ (1c)}$$

$$W_{vt} \leq P_{v} \qquad \forall v \in \hat{\mathcal{V}}_{f}, f \in \mathcal{F}, t \in \mathcal{T} \text{ (1d)}$$

$$E_{vt} \geq 0 \qquad \forall v \in \mathcal{V}, t \in \mathcal{T} \text{ (1d)}$$

$$P_{v} \in \{0, 1\} \qquad \forall v \in \mathcal{V}, t \in \mathcal{T} \text{ (1g)}$$

$$X_{vft} \in \{0, 1\} \qquad \forall v \in \hat{\mathcal{V}}_{f}, f \in \mathcal{F}, t \in \mathcal{T} \text{ (1h)}$$

A vehicle's wash period is equal to the sum of the wash times of assigned mirrors conceptual design • components • integration • mass production • heliostat field

subject to

Assignment

$$\begin{split} \sum_{v \in \hat{\mathcal{V}}_{f}} X_{vft} &= 1 & \forall f \in \mathcal{F}, \ t \in \mathcal{T} \ \text{(1a)} \\ \\ E_{vt} &= \sum_{f \in \hat{\mathcal{F}}_{v}} \tau_{vf} \cdot X_{vft} & \forall v \in \mathcal{V}, \ t \in \mathcal{T} \ \text{(1b)} \\ \\ \hline X_{vft} &\leq W_{vt} & \forall v \in \hat{\mathcal{V}}_{f}, \ f \in \mathcal{F}, \ t \in \mathcal{T} \ \text{(1c)} \\ \\ W_{vt} &\leq P_{v} & \forall v \in \hat{\mathcal{V}}, \ t \in \mathcal{T} \ \text{(1d)} \\ \\ F_{vt} &\geq 0 & \forall v \in \mathcal{V}, \ t \in \mathcal{T} \ \text{(1d)} \\ \\ P_{v} &\in \{0, 1\} & \forall v \in \mathcal{V}, \ t \in \mathcal{T} \ \text{(1e)} \\ \\ W_{vt} &\in \{0, 1\} & \forall v \in \hat{\mathcal{V}}_{f}, \ f \in \mathcal{F}, \ t \in \mathcal{T} \ \text{(1g)} \\ \\ \\ X_{vft} &\in \{0, 1\} & \forall v \in \hat{\mathcal{V}}_{f}, \ f \in \mathcal{F}, \ t \in \mathcal{T} \ \text{(1h)} \\ \end{split}$$

conceptual design • components

• int

integration •

mass production

•

subject to

$\sum_{v \in \hat{\mathcal{V}}_f} X_{vft} = 1$	$\forall f \in \mathcal{F}, t \in \mathcal{T}$ (1a)
$E_{vt} = \sum_{} \tau_{vf} \cdot X_{vft}$	$\forall v \in \mathcal{V}, t \in \mathcal{T}$ (1b)
$f \in \mathcal{F}_v$ $X_{vft} \le W_{vt}$	$\forall v \in \hat{\mathcal{V}}_f, f \in \mathcal{F}, t \in \mathcal{T}$ (1c)
$W_{vt} \le P_v$	$\forall v \in \mathcal{V}, t \in \mathcal{T}$ (1d)
$E_{vt} \ge 0$	$\forall v \in \mathcal{V}, t \in \mathcal{T}$ (1e)
$P_v \in \{0, 1\}$	$\forall v \in \mathcal{V} \ (1f)$
$W_{vt} \in \{0,1\}$	$\forall v \in \mathcal{V}, t \in \mathcal{T}$ (1g)
$X_{vft} \in \{0, 1\}$	$\forall v \in \hat{\mathcal{V}}_f, f \in \mathcal{F}, t \in \mathcal{T}.$ (1h)

Purchases, hiring, assignments are all binary decisions

conceptual design • components •

integration

mass production

heliostat field
 NREL | 11

Preliminary Results

- We can optimize wash crew planning and obtain expected performance and cost
- If we incorporate uncertainty in cost or soiling rate, estimates with confidence intervals are straightforward
 - However, we want to avoid the assumption of constant soiling loss over time, which is the next step in our exploration

Ongoing work

- Introduce stochastic soiling model
- Simulate infrequent events (precipitation, dust storms) and determine impact on costs

1 Motivation

- **2 O&M Cost Forecasting Progress**
- **3** Soiling Studies and Database

Soiling Experiments

(Half) Acceptance Angle: 145 mradWavelength:435-1050 μmAccuracy:<0.4%</td>

Data collected so far at 6 sites in Australia:

- Brisbane, QLD (QUT)
- Mount Isa, QLD (Vast)
- Wodonga, VIC (Mars Petcare)
- Roseworthy, SA (Uni Adelaide)
- Port Augusta, SA (Vast)
- Carwarp, VIC (RayGen)

Data collection planned at one perspective site in Australia, one research centre in USA, and one research centre in Spain:

- Yadnarie, SA (RayGen)
- Albuquerque, NM (SANDIA)
- Madrid (IMDEA Energy)

Soiling Database

mirror_soiling_data (Public)		⊙ Watch 1
🐉 main 🔹 🐉 1 Branch 🚫 0 Tags	Q Go to file T Add file -	<> Code 🔹
giovipico updated readme	c62a20c · 1 minute ago	🕚 6 Commits
🖿 ablrf	updated repository	7 minutes ago
🖿 mount_isa	updated repository	7 minutes ago
🖿 qut	updated repository	7 minutes ago
📄 wodonga	updated repository	7 minutes ago
🕒 .gitignore	Added first data sets after approval from partners	last year
	Initial commit	last year
README.md	updated readme	1 minute ago

C README MIT license

Mirror Soiling Data

A data repository for soiling of solar mirrors. Each folder contains experimental data collected at the named location including the time period and a parameters file that is used to set constants possibly dependent on site location. The data are organized in Excel sheets: "Dust" contains constant related to local dust characteristics (if available, otherwise taken from literature); "Source_Intensity" has optics data related to the device used to measure the reflectance (D&S reflectometer in most cases) "Tilts" reports the tilt history for each mirror exposed outdoor for the experiments "Reflectance_Average" reports the measured values of reflectance on the mirrors "Reflectance_Sigma" reports the computed variance of the reflectance measurements on each mirrors (usually 6 to 9 data points are collected on each mirror)

Reflectance data collected in the aforementioned sites are being made publicly available in a "soiling database" currently hosted in GitHub

Discussion is ongoing regarding improved solutions for host website and data usage availability

Industrial partner data are subjected to NDAs and sharing approval

https://github.com/cholette/mirror_soiling_data

Ø

Daily Soiling Losses Assessment

17

The developed soiling model admits a straightforward procedure for estimating soiling rate distributions:

- Sample parameters (from estimated distribution)
- Sample dust loadings
- Sample from resulting reflectance change distribution
- Repeat *M* times

Results are presented for some of the surveyed sites

Carwarp

Condensation Impact on Soiling

4. Evaporation

Key findings:

- Heavy dew tests showed higher cleanliness values compared to lower condensation loads and dry conditions
- Larger mean particle diameters were linked to higher condensation loads due to agglomeration of smaller particles, while increasing tilt angles decreased mean diameters.
- Increasing tilt angle from horizontal to 70 degrees reduced dust deposition by 80% and 50% for dry and evaporated samples, respectively.
- An inter-comparison of devices revealed a strong correlation, particularly between the pFLEX and D&S specular reflectometers, with a Pearson correlation of 97%.

Mirror washing at Ivanpah

- Analyzed sectorial losses
- Fit field-average model (right, top)
- Optimized reflectance-based cleaning
- Can often be simplified to clean/don't clean (right, bottom)
- Can offer significant savings compared to fixed-schedule cleaning (bottom)

20

mass production

0

40

60

Week

80

100

heliostat field

Soiling Subtask ongoing activities

- Building the soiling database permissions and new campaigns
- Design considering soiling (bottom)
- Benchmarking activities
 - Satellite reanalysis vs. ground measurements (right)
 - Deposition + loss models from literature

LCOE/TES pairs vs field layout vs SM - Soiled field - Full-load operation

- Engagement with international researchers working on soiling (e.g. IMDEA, PSA, Fraunhofer ISE)
- Modelling refinements on horizon

Questions?

alexander.zolan@nrel.gov, g.picotti@qut.edu.au

www.nrel.gov csp.sandia.gov

Subscribe to HelioCon:

- Heliostat.Consortium@nrel.gov