

Using an equivalent slope error to quantify beam errors of heliostats

Ye Wang, Joe Coventry, John Pye Australian National University

17 July 2024 ASME 2024 Energy Sustainability Conference

conceptual design • components • integration • mass production • heliostat field

Types of beam errors

CONCENTRATOR HELIOSTAT TRACKING Incoming n_{ideal} \rightarrow n_{ideal} beam \rightarrow n_{ideal} Changes caused n_{ideal} n_{real} n_{real} by varying loads n_{real} $n_{\sf real}$ **Reflected** of $+$ $\ddot{}$ $\mathbf +$ $\ddot{}$ beam cone - gravity - wind - temperature Waviness Contour Error (SD_{contour}) Canting Error (SD_{canting}) $\begin{array}{l}\Delta\:\text{SD}_\text{grav} \\ \Delta\:\text{SD}_\text{wind} \end{array}$ Specularity Error (Spec) _______ = Alignment Error = Roughness Error Δ SD_{temp} Slope Deviation / Error (SD) Tracking Deviation (Track) Specularity Error (Spec) \triangle Slope Deviation (\triangle SD) (changes surface error) (expressed as beam error), (surface error) (surface error) in mrad Beam Quality (BQ) Focus Deviation (Focus) (beam error) (beam error) in m

[Roger et al, 2023. SolarPACES Guidline for Heliostat Performance Testing](https://elib.dlr.de/199045/1/231012_SolarPACES-ID%2027182_GuidelinesForHeliostatTesting_MarcR%C3%B6ger.pdf)

Measurement Method

- Indirect method: flux mapping by a beam characterisation system (BCS)
- Direct method: deflectometry, photogrammetry, laser radar
	- \rightarrow slope deviation matrices in relation to ideal shape

Objectives

- Establish the interface between measured data and optical simulations
- Convert measured optical errors into an equivalent model for whole field and annual performance analysis

Benefits of using an equivalent slope error:

- A straightforward way to quantify beam quality
- A consistent way to compare the magnitude of different types of beam errors.
- Applicable using flux mapping or BCS data
- Easy to implement in ray-tracing simulations to perform heliostat field design, O&M planning, and annual performance analysis.

Method

- On-axis arrangement: no astigmatism error
- Perfect surface features: 0 slope error, 100% reflectivity
- Irradiation source
	- ➢ Collimated rays
	- ➢ Buie sunshape 2%
- Four reflector shapes
	- ➢ Paraboloid
	- ➢ Sphere
	- ➢ Parabolic-cylinder
	- ➢ Flat
- Different heliostat design
	- Single facet
	- -3×3
	- -5×5

Energy capture percentage

• Different slant range distances: 100, 500, 1000m

-
-
- conceptual design components integration mass production heliostat field

Collimated rays, ideal case

Reflectors in 12 configurations, 0 surface, 0 slope error, on-axis arrangement, ideally focused

- Without sunshape and surface slope errors, the beam shape remains unchanged across different slant (SL) ranges.
- spherical reflector with a radius of curvature (ROC) twice the SL range provides the same concentration ratio as an ideal paraboloid reflector.
- single-facet parabolic-cylindrical reflector offers a line focus feature and performs better than a flat single-facet reflector.
- Using multiple ideally canted facets by the slant range significantly increases the concentration ratio for both flat and parabolic-cylindrical facets.
- More canted facets result in better concentration because the overall shape of the collector more closely resembles a paraboloid.
- Ideally canted 5x5 flat facets can reduce the capture radius from 5–6m to around 1m, comparable to parabolic-cylindrical facets.

Buie sunshape

Reflectors in 12 configurations, 0 surface slope error, on-axis arrangement, ideally focused

An ideal paraboloid reflector with slope errors (focal length = slant (SL) range)

- When sunshape is included, beam shapes spread more as the SL range increases.
- There is no performance difference between an ideal paraboloid concentrator and a flat reflector when they are far from the target. For a heliostat 1 km from the target, the beam tail can extend to 25 m.
- Equivalent slope error (ESE) is the slope error on an ideal paraboloid that matches the capture radius of an "as-is" heliostat configuration.

conceptual design • components • integration • mass production • heliostat field

Equivalent slope error (ESE)

Reflectors in 12 configurations, 0 surface slope error, on-axis arrangement, ideally focused

- Spherical facets perform as well as a paraboloid.
- Non-ideal shape heliostats perform better and is comparable with ideal shape heliostats at greater distances due to sunshape spreading the beam.
- A single flat facet is equivalent to 12.3 mrad at 100 m from the target, but reduces to 1.3 mrad at greater distances.
- A 5x5 flat-facet heliostat is equivalent to 2.2 mrad at 100 m and performs almost as well as an ideal paraboloid with 0.1 mrad ESE.

ESE of facet focus and canting errors \cdot **Paraboloid facets**

Radius of 95% energy capture

- A negative error indicates a shorter focal length than the ideal focus, while a positive error indicates a longer focal length.
- A negative error means the reflector is more curved.
- A positive error means the reflector is flatter.
- A more curved reflector generally performs worse than a flatter one.
- More facets allow for greater tolerance of facet-level errors.
- A 5x5 flat-facet heliostat has only 2.2 mrad at 100 m

Full field case

- Design point: summer solstice, solar noon azi=180, ele=78
- Heliostat layout: 524 heliostats
- Aiming point (0, 0, 62)
- 20 million rays using Solstice ray tracing program

conceptual design • components • integration • mass production • heliostat field

Results – full field, design point

Ideal focus and canting for facets in different shapes

Results – full field, annual performance

Matching capture radius of 95%

- It is hard to use an equivalent slope error to fit the whole flux distribution
- but it is ok to use an ESE to predict the energy capture

Verification: annual optical efficiency for the 10% focal length error

Conclusions and future work

- ESE is obtained by matching the radius of energy capture between an 'as-is' flux map and an ideal paraboloid heliostat with a slope error.
- It is validated that the ESE obtained at the design point for the full field can be applied to annual performance analysis.
- ESE offers a straightforward way to compare the magnitude of different types of beam errors.
- When sunshape is included, beam shapes spread more as the SL range increases. There is no performance difference between an ideal paraboloid concentrator and a flat reflector when they are far from the target.
- Non-ideal shape heliostats perform better and are comparable with ideal shape heliostats at greater distances due to sunshape spreading the beam.
- A single flat facet is equivalent to 12.3 mrad at 100 m from the target but reduces to 1.3 mrad at greater distances.
- A 5x5 flat-facet heliostat is equivalent to 2.2 mrad at 100 m and performs almost as well as an ideal paraboloid with 0.1 mrad ESE.
- More facets allow for greater tolerance of facet-level errors.
- A more curved reflector generally performs worse than a flatter one.

Future Work:

- How to use the ESE of a single heliostat to obtain the ESE of the whole field.
- Investigate more types of optical errors.

conceptual design • components • integration • mass production • heliostat field

Questions?

csp.sandia.gov

Subscribe to HelioCon:

- Heliostat.Consortium@nrel.gov