

Heliostat Consortium: Field Deployment

Status Quo of Heliostat Field Deployment Processes

Lead: Jeremy Sment, SNL Co-lead: Alexander Zolan, NREL

July 10-12, 2023 ASME Washington, D.C.

Overview

- Preparation and RFP
- Site Selection
- Field Layout
- Supply Chain
- Assembly
- Site Preparation, Construction and Installation
- Calibration
- Operations and Maintenance

Preparation and RFP

- CSP Plant developer responds to RFP issued by power company
 - Deployment proposal package typically due in 2-3 months
 - Risk assessment
 - ✓ Reliability basis
 - ✓ Guarantee of Performance
 - ✓ Solar field system design
 - Power purchase agreement
 - Secured capitalization and construction plan
 - $\checkmark~$ Coalition of investors, developers and EPCs
 - Is EPC materially invested and properly capitalized to absorb losses
 - Legal egress to interconnections
 - Resolution proposal for all anticipated or existing land use issues
 - Post-bid hurdles
 - ✓ Environmental
 - ✓ Cultural (rural and tribal)
 - Opposition groups
 - Political support
 - Public relations campaign
 - ✓ Developing technology with lack of standards, shifting specifications and contract acceptance criteria
 - ✓ = HelioCon
 - DOE outside of HelioCon

conceptual design •

components •

integration

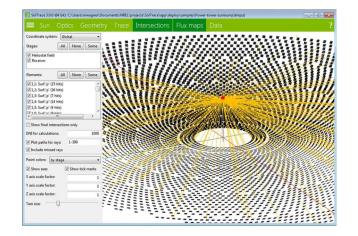
mass production

heliostat field

Renewable portfolio standards

- Competition in RFP limited to renewable energy sources
- Deployment times
 - Wind and PV assume deployment in 6 months (18 months with batteries)
 - ✓ CSP assumes 24-36 months but efforts to reduce to 18 months are underway
 - Financing terms and ITC/PTCs may change if project cannot deploy within a political cycle
 - Rice Solar ITC drops from 30%-10%
 - Redstone awarded in 2015, deployed in 2021
 - Retirement of fossil plants must have simultaneous replacement by renewables

Site Selection



- Ideal
 - DNI, visibility, large flat land area, low winds, convenient grid tie, nearby labor force and water supply
- Scouting prospective sites
 - ✓ Developer does not always get to choose the location and must meet the RFP requirements regardless of DNI and land conditions etc.
 - Sites can be selected for political reasons such as bringing jobs to a district or civil infrastructure developments
 - RFP will specify life of project disincentive for higher quality components
 - Irradiance maps consider clouds averaged over decades but may not consider shading from new airline paths or more frequent forest fires
 - Geotechnical data may not be available within RFP window
 - \checkmark Heliostat size vs geological soil profiles

Field Layout

- Receiver is selected which constrains the field
- Ray tracing software optimizes positions
 - More advanced systems can accommodate elevation and avoid collisions for denser packing
 - Raw unleveled fields are common
 - Receiver view of reflectors is nearly solid
- Installation plans
 - ✓ Large heliostats use pylons or piles to hold foundations
 - Small heliostats can use ballasting
 - Land changes over time so some fixtures are still necessary
 - Grouping heliostats with frame has been tried
 - Inner field wind blocking effects
 - Mass reductions in components may not offset mass production savings
 - GPS can locate heliostats within 5 cm
 - Cabling and trenching is competitive with Wi-Fi and solar panels (Ashalim, DEWA, Redstone)

Supply Chain

- Supply chain for entire project is often required in the RFP
 - Difficult to change because system-wide re-analysis can be required
 - Relationships with suppliers are difficult to change
 - Manufacturing relationships
- Supply-chain vulnerability
 - Deployments are several years or decades apart undermining investments in costcutting technologies
 - Glass and backing fabrication techniques are guarded by ~3 facet companies
- Materials and components
 - Mapping humidity and oxidation rates to the backing material improved since 2012
 - Minimization of backing materials has reduced costs (region humidity specific)
 - Pedestal alloy material minimization (region humidity specific)

Assembly

• Size considerations

- No standard
- Per-heliostat component costs favor more facets
- Small heliostats have lower wind resistance and compatible with factory assembly
- Large heliostats have large pylons or deep piles vs. ballasted/small pile
- Quality considerations
 - Heliostats should consider cost of life of plant not just arrival but not standard
 - Components often arrive several years before assembly making issues undiscoverable until very late
- Procurement
 - Process is onerous and can cause delays or cancellations (bids were reviewed for 2.5 years in one plant)
 - Optimization of size to fit standard shipping containers may reduce costs
- Assembly
 - Labor force may be low in plant areas favoring more assembly off-site
 - Investment in assembly shops affected by delays between projects favoring off-site

Site Preparation, Construction and Installation

- Automation is being developed to reduce construction labor costs
 - Heliogen developing fully autonomous heliostat transport and locating systems
 - Field improvements and leveling may be more important for robotic installation systems
 - Impacts of labor swell on local communities can form a boom-bust cycle
- Government works investment
 - Job creation motivates support for these types of projects
 - BIL provides basic 30% ITC but job considerations may reduce costs
 - +10% low-median income of tribal areas
 - +10% re-equipping, expansion, or establishment of manufacturing facility (on-site assembly?)
 - +10% using products produced in United States
 - +10% deploying in "energy communities" (closed down coal plants)
 - +20% low-income economic benefit project
 - Wage requirements and union worker requirements may be a factor in federally funded projects

Site Preparation, Construction and Installation

- Field preparations
 - Trenching and leveling is large cost and may increase erosion affecting wash truck egress
 - Brightsource minimizes field alterations to minimize erosion, environmental impacts
 - Plants are trimmed but not eliminated
 - Brightsource has deployed wireless fields with individual solar panels to minimize trenching costs
 - Lightning is considered a risk for wired fields

Calibration

- Assembly room calibration
 - Detailed methods using screen patterns
- Field calibration
 - Pointing error determined with BCS photogrammetry (difficult for distant heliostats)
 - UAV-based systems are being developed (UFACET, NEO)
 - Tower mounted camera and flux sensor techniques used to recalibrate periodically
 - Projectors and light sources
- Software
 - Ray-tracing
 - Image processing
 - Video processing
- SolarPACES Topic 3 task force will present details on field calibration techniques

Operations and Maintenance

- Heliostats are typically very reliable (>90% availability)
- Calibration and performance monitoring cycle through field
- Cleaning
 - Larger heliostats typically use trucks (COSIN has deployed autonomous trucks)
 - Smaller heliostats can use crews
- Sustained labor
 - <10 field maintenance personnel
 - ≤ 5 operators
 - ≤ 2 facet cleaners
 - Ashalim crew can wash 50,000 heliostats by hand 20-25 times a year using 3 liter water per heliostat
- Operations
 - Aim-point strategies are being replaced with more sophisticated strategies to constantly focus and defocus to maintain optimal HTF temperature (Brightsource)
 - Avoidance techniques for birds and wildlife have improved substantially (circular standby)
 - Operations have achieved full autonomy and remote monitoring
 - Intelligent heliostat routing has been demonstrated where heliostats constantly know path for emergency scatter without hitting tower or colliding with other heliostats (Brightsource)
 - Intelligent weather and cloud detection techniques protect receivers

- Heliostat field technology has made great strides since the early fields circa 2013
 - Autonomous field operations
 - Autonomous washing trucks
 - Full field calibration cycles
 - UAV-based evaluation techniques
 - Remote monitoring
 - Wireless control
 - PV+battery deployed on each heliostat
- Significant levels of support in US
 - BIL/IRA tax incentives
 - DOE funding and loan guarantee program