SolarDynamics LLC Concentrating on a new energy future

SunRingTM Advanced Manufacturing and Field Deployment

Award #: SUB-2023-10314

HelioCon Workshop – July 12th, 2023

Presented by: Kyle Kattke (PI)

CONFIDENTIAL ©2023 Solar Dynamics LLC. Broomfield, CO

SunRing Overview

- SunRing heliostat was developed under SETO Drop-C project (DE-EE0008024) from 2017-2022
 - Total installed cost: \$96/m₂ at commercial scale (2019\$)
 - Wind criteria: 35 mph maximum tracking / 94 mph survival in stow

- Total optical error (slope basis):
 - 1.6 mrad w/ FEA predicted structural deflection
 - 2.5 mrad w/ Photogrammetry measured structural deflection

Baseline SunRing Prototype from Drop-C Project		Baseline SunRing	
		Reflective area	27 m ²
		Dimensions	8.46 x 3.21 m
	Elevation Rotation Axis	Aspect ratio	2.6
		Stow height	1.98 m
		Mirror shape	Canted, flat
		Foundation	3 x screw piles
		Power	PV + battery
	Azimuth Rotation Axis	Control	Wireless

HelioCon Project

- 24-month contract with 2 phases
- Overall goals
 - Move large portion of SunRing assembly offsite
 - Redesign mirror array and realize predicted optical performance
 - Reduce uncertainty in-field works (construction → commissioning)
 - Create holistic cost model (capital costs lifetime O&M) in today's dollars

Project Focus Areas

SolarDynamics Concentrating on a new energy future

Task 1: Offsite Assembly

- Azimuth drive and lower support structure pre-assembled offsite
 - Access to lower labor rates
 - Characterization of azimuth drive done in controlled environment
 - Assembly folds down

to minimize shipping costs

Pre-Assembles: Blue – Main Lower Structure Red – Outer Space Frame

Task 3: In-field Works

- Detailed workplan for all in-field work to reduce uncertainty in cost and schedule
 - SunRing installation in field
 - Solar field roads
 - Conceptual design and cost for rig to install all foundation piles simultaneously
 - Commissioning (controls + tracking calibration)

Task 2: New Mirror Array Developed for Automated Assembly

- Develop automated assembly workstation for mirror array
 - Jig holds facets in ideal canted + focused position
 - Facets secured to torque tube to lock in optical shape
 - Adds 2-D focusing to SunRing at minimal cost
- Prototype to be built at SolarTAC facility (near Denver, CO)
 - SOFAST will be installed and used to tune jig to meet goal optical shape

Integration of workstation into automated assembly line

Task 4: Holistic Heliostat Cost Model

- Update SunRing cost to current dollars
- Create cost model to capture all costs in heliostat lifecycle
 - Components, assembly, infrastructure, installation, commissioning, O&M
 - Will make publicly available