

Heliostat Consortium: Update on Resource, Training, and Education Development and Women+ in Concentrating Solar

Lead: Rebecca Mitchell, NREL

Co-lead: Jeremy Sment, SNL

July 10-12, 2023

ASME

Washington, D.C.

Heliostat Consortium (HelioCon)

US Energy Department has funded 5-year heliostat consortium:

- To advance U.S. heliostat technologies, capabilities and national workforce
- \$25M + cost share: 30% of funds allocated to RFPs for engagement of US industries and other stake holders

Scope of Resource, Training, and Education

University Involvement

Diversity, Equity, and Inclusion

Training Resources

Online Database

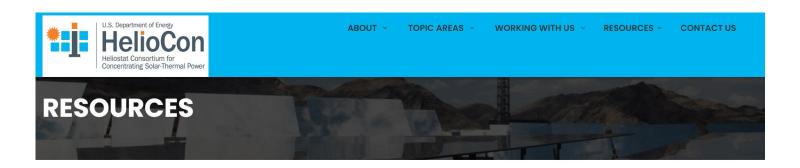
HelioCon RTE Objectives

- Develop heliostat training programs
 - Identify training and education needs of labs, industry, and universities
 - Design and test training materials for new workers
- Engage education institutes to develop workforce pipeline
 - Support heliostat Master's/PhD thesis development, technical training programs
 - Create heliostat grant opportunities
 - Provide internships opportunities
- Promote Diversity, Equity, and Inclusion (DEI)
 - Create programs that benefit minority/underserved communities
- Create centralized resource database
 - Compile all RTE materials and information into centralized web-based resource

RTE Top Ranked Gaps

Tier 1 Gaps (Most Important)		
R1	 Heliostat technology resources are not accessible in a centralized web-based format Need for a heliostat reference library that is accessible to newcomers Lack of documentation and accessibility of current institutional knowledge, including knowledge on industry standards, materials, procedures, and case studies of lessons learned Need for a centralized database to find information on available software/hardware tools and methods Need for a centralized database of training/education materials 	
R2	 Lack of heliostat research projects in universities Small number of university students/faculties performing heliostat-related research Very few students masters/PhD thesis projects related to heliostats/CSP Need for CSP/heliostat research funding accessible to minority/underrepresented students 	
R3	 Little public awareness of CSP/heliostat technologies Awareness of CSP/heliostat technologies is not widespread across students or the public Lack of informational videos and documents introducing heliostat/solar thermal technologies to a general audience Lack of CSP/heliostats social media content 	
R4	 Lack of resources and guidance for promoting DEI in CSP workforce Lack of DEI training resources and guidance for heliostat workforce Need resources for project leaders to prioritize DEI in project planning Need for more partnerships with minority-serving institutions 	

Recommended Pathways



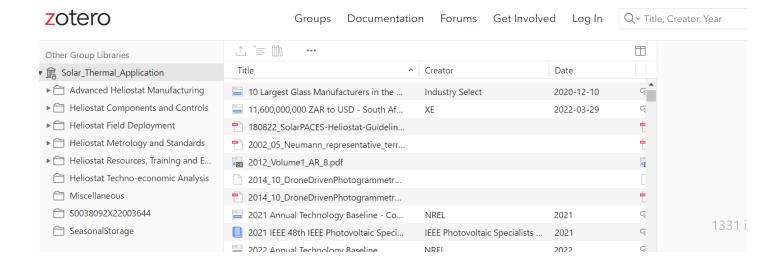
Gaps	Recommended Pathways
R1: Heliostat technology resources are not accessible	 Compile institutional knowledge, such as manufacturing and plant O&M best practices and lessons learned through interviews and surveys
in a centralized-web based format	 Compile available resource materials including industry data/knowledge, references, training and educational resources, and available tools
	Organize resource materials and data into web database
R2: Lack of heliostat research projects in	 Establish connections between students/faculty and researchers/industry leaders through internship opportunities
universities	 Identify and support PhD/masters students to purse heliostat-focused thesis projects
	Pose industry problems to universities to innovate solutions
R3: Little public awareness	 Create short introductory/informational videos targeted at a general audience
of CSP/heliostat technologies	 Create social media accounts for CSP/heliostat technologies and enlist researchers and students to generate content
	 Create public events, such as seminar series or workshops to educate a broad audience of heliostat fundamentals
	Partner with universities to create annual fundamental CSP trainings open to the public
R4: Lack of resources and	 Consult with DEI staff/experts establish resource and training materials, create diverse project teams
guidance for promoting DEI in CSP workforce	Partner with minority-serving institutions on CSP projects
III CSP WORKIOICE	Identify organizations and contacts to partner with that work with underserved communities

Resource Database - https://heliocon.org/

- Reference library
- Education and training resources
- Lists of heliostat component suppliers and developers, metrology tools, and software tools
- Existing power tower plant database
- List of standards/guidelines
- Summary of best practices and lessons learned
- References to external resources

Resources

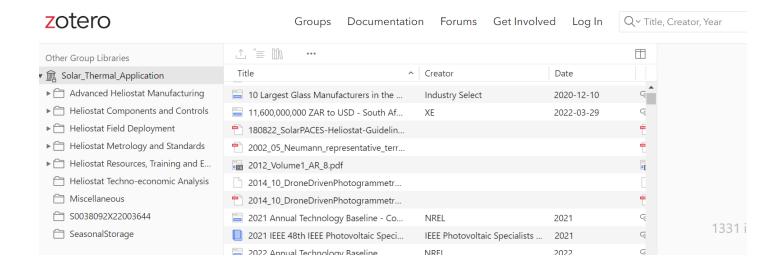
The resources in this section include background on concentrating solar power (CSP), available scientific publications, videos, and additional information on heliostats.


- Background on Concentrating Solar Power
- HelioCon Seminar and Educational Videos
- Zotero References
- HelioCon Publications

Reference Library

https://www.zotero.org/groups/4045055/solar thermal application/library

- Create in Zotero
- Scientific publications pertaining to heliostats and power tower solar fields
- Over 300 publicly available sites and articles


Education and Training Resources

https://heliocon.org/resources/heliocon_esev.html

https://heliocon.org/resource download/An Overview of Heliostats and Concentrating Solar Power Tower Plants.pdf

- Video recordings and slides from the HelioCon seminar series featuring industry and R&D experts
- Two-part video tutorial on SolTrace
- Introductory document on CSP power tower plants and heliostats through the design cycle

Components, Metrology, and Software

https://heliocon.org/resources/Background on Concentrating Solar Power.html

- Components list includes solar field equipment suppliers, thermal energy system providers, and power block equipment suppliers
- Metrology list includes tools to measure specular reflectance, opto-mechanical errors, and heliostat shape
- Software list includes tools for modeling, simulation, and optimization of CSP power systems

An Overview of Heliostats and Concentrating Solar Power Tower Plants

This downloadable report, 'An Overview of Heliostats and Concentrating Solar Power Tower Plants,' includes a summary of design types and concerns, components, field implementation and performance assessment of heliostats, along with the standard solar power tower plant design as a reference to those interested in heliostats and CSP tower technology.

Downloads:

- An Overview of Heliostats and Concentrating Solar Power Tower Plants (PDF)
- Metrology Tools List (.xlsx)
- Software(.xlsx)
- Component supplier (.xlsx)

Power Tower Plant Database

Ivanpah Solar Electric Generating System

- Field layout, tower, and heliostat design data
- Timeline of plant construction, commissioning, and operation
- Plant power generation data
- Major plant events and lessons learned
- Plant image gallery

General Plant Data

Location: Primm, NV California US

Owner: NRG, Brightsource, Google

Capacity: 377MW

- Tower 1: 120MW
- Tower 2: 133MW
- Tower 3: 133MW

Women+ in Concentrating Solar

- Formed at SolarPACES 2022 to promote education, professional development, and advancement of underrepresented genders in the Concentrated Solar Power community
- Use our expert database to recruit speakers from diverse backgrounds: https://women.solarpaces.org/members//
- Mentorship program coming soon!

Become a member today, all gender identities welcome!

https://women.solarpaces.org/register/

Get in Touch!

- Heliostat.Consortium@nrel.gov
- Rebecca.Mitchell@nrel.gov
- https://heliocon.org/