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Abstract— This paper investigates a real-time optimiza-
tion algorithm for autonomously calibrating the heliostats
in a concentrated solar power plant to maximize power
generation. The current state-of-the-art uses open-loop
control with human-operators to provide feedback on the
heliostats. This paper presents a method for tuning the
RTO to ensure stable and fast convergence to the optimal
alignment, which is robust to uncertainty in the shape of
the sunspot. The exponential stability of the system is
certified using a quadratic Lyapunov function and output
feedback methods to couple the Lyapunov functions of the
plant and the Real-Time Optimization (RTO) algorithm. To
validate stability, performance, and robustness, the closed-
loop system is simulated using different power distribu-
tions that demonstrate the need for our RTO algorithm.

Index Terms— Closed-loop control, Heliostat control,
Real-time optimization

I. INTRODUCTION

Concentrated Solar Power (CSP) is a reliable form of renew-
able energy that can rival non-renewable sources [7] in energy
production and operation costs. A CSP plant concentrates
solar energy to heat a working fluid used in a traditional
thermodynamic cycle to produce electricity [12]. Although
the power capacity varies with the time of day and year,
CSP power remains available year-round and over-night using
thermal storage. While there are several different methods of
CSP [11] [9], the focus of this paper is on CSP using heliostats.
A heliostat is a collection of mirrors or facets that reflects
sunlight onto a power tower, also known as the receiver, as
a sunspot to heat the working fluid. The main challenge of
CSP plant heliostats is that they require closed-loop control to
remain aligned with the movement of the Sun. The theoretical
Carnot efficiency of power generation increases with the heat-
flux on the receiver; thus, to maximize power generation, the
heliostats need to continually realign with the Sun’s movement
to reflect sunlight optimally onto the receiver. Ideally, this
realignment can be performed autonomously using RTO [4]
to find and maintain the optimal pointing alignment.

Currently, the desired alignment is provided by open-loop
commands from a human-operator in the form of azimuth
and elevation angles tracked by the heliostats. These set-
points are computed using the current positions of the Sun,
mirror, and receiver. This approach reduces power generation
for several reasons. First, without feedback, model uncertainty
introduces error, resulting in a misaligned sunspot on the
receiver. This is introduced by differences in the blueprint
and actual locations of the heliostat and miscalibrated en-
coders used by the inner-loop heliostat controllers. Second, the
heliostats do not track the Sun’s movement perfectly. Slight
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tracking errors accumulate over time, causing the sunspot to
drift from its desired position, requiring a skilled operator
to continuously monitor and adjust the heliostats’ alignment,
increasing operational costs. Third, disturbances, such as wind,
can misalign the heliostats. This paper presents an RTO al-
gorithm for autonomously aligning the CSP plant heliostats
to maximize power generation despite model uncertainty and
disturbances using real-time feedback.

Other methods have been proposed for real-time power
maximization in CSP. system observation for heliostat orienta-
tions while tracking (SOHOT) is a commercial method that uses
images of the heliostats and ray-tracing programs to calculate
the heliostats’ optimal pointing alignment [6]. However, this
method is time-consuming and expensive. Furthermore, it
does not address the need for autonomous feedback, instead
provides more data to the operator, increasing their workload
and the skill-level necessary to operate the CSP plant. There are
also other closed-loop control approaches by Kribus et al. [5]
and by Freeman et al. [3]. The method in [5] compares four im-
ages around the receiver to measure and use sunlight spillage
as feedback to adjust the heliostat. The work in [3] builds
upon [5] by perturbing the light waves picked up by photo-
sensors around the receiver and calculating the heliostat’s
surface normal vector to improve calibration and standalone
movement. Our method is distinct from previous approaches in
that it uses real-time measurements combined with a gradient
ascent to maximize power. A key advantage of our data-driven
approach is its compatibility with various data collection
methods commonly employed by existing CSP plants, which
helps to lower installation and operational costs. Additionally,
our method implicitly filters the sensor measurements to obtain
a robust estimate of the heliostat’s optimal pointing alignment,
whereas other methods assume that the sensor measurements
obtained by specialized sensors are ground-truth.

We contribute a semi-definite programming (SDP)-based
algorithm for tuning the parameters of a standard RTO archi-
tecture [8] applied to the CSP alignment problem. Our tuning
algorithm ensures exponential stability, minimal settling-time,
and guaranteed robustness to model uncertainty. We exploit
the Hammerstein structure and exponential nonlinearity of the
CSP plant to transform the closed-loop system model into an
uncertain linear system. This allows us to adapt SDP techniques
for output-feedback to tune the RTO for performance and
robustness. We formulate the SDP with linear matrix inequality
(LMI) constraints that guarantee robust stability despite the
unknown shape of the sunspot produced by the heliostat facets.
We formulate the SDP cost to minimize the worst-case settling-
time of the uncertain closed-loop system. This method can be
applied to similar problems that have a similar Hammerstein
structure with an exponential non-linearity.
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Fig. 1. Block diagram of the closed-loop RTO architecture for real-time
optimization of heliostat CSP.

II. RTO TUNING PROBLEM

In this section, we describe the heliostat alignment problem
and the architecture of the RTO adapted to solve this problem.
The block diagram of a heliostat-CSP in closed-loop with an
RTO controller is shown in Fig. 1.

A. Plant Dynamics

The plant is modeled as a Hammerstein system consisting
of the heliostat dynamics and a nonlinear power function. The
heliostat is modeled as a known linear system with generic
state-space realization

xk+1 = Axk +Brk (1a)
yk = Cxk (1b)

where xk ∈ Rn is the state at time k. The dynamics (1) are
inherently multi-input/multi-output with the reference rk =
(rk,az, rk,el) ∈ R2 consisting of the desired azimuth raz and
elevation angle rel of the heliostat, and the output yk =
(yk,az, yk,el) ∈ R2 consisting of the actual azimuth yaz and
elevation angle yel. The heliostats are servo-ed by an inner-
loop controller that ensures that measured outputs y → r
converge to the reference r. The RTO will find the reference
r that maximizes power.

The intensity of light across the sunspot generated by the
heliostat has a Gaussian distribution [10]

P (y) =
P̄√

(2π)2|Σ|
exp

(
−1

2
(y − r∗)TΣ−1(y − r∗)

)
(2)

where P̄ is the unknown power provided by the Sun, the
unknown matrix Σ−1 ∈ R2×2 determines the shape of the
sunspot, and the unknown optimal alignment r⋆ ∈ R2 has a
complicated dependence on the relative positions of the Sun,
heliostat, and receiver.

The time-varying nominal power P̄k is a source of mul-
tiplicative noise. By taking the logarithm of (2), we obtain
logP (y) = νk − 1

2 (y − r⋆)TΣ−1(y − r⋆) where νk =

log P̄ /
√

(2π)2|Σ| is now an additive disturbance independent
of y. Furthermore, when we take the gradient ∇y logP (y)
of the log-power with respect to y, this term disappears. In
practice, νk is slowly varying since fluctuations in the nominal
power P̄k are caused by the movement of the Sun or clouds
which are slow relative to the heliostat bandwidth.

The shape matrix Σ−1 is the main source of uncertainty
since the slowly varying disturbance νk and unknown optimal
alignment r⋆ will be estimated from power measurements. We
model this uncertainty as a convex-hull of the shape matrices
Σ−1

D =

{∑N

i=1
ξiΣ

−1
i :

∑N

i=1
ξi = 1, ξi ≥ 0

}
(3)

The vertices Σ−1
i of the set (3) are empirically identified from

images of sunspots on the receiver. Our assumption is that in
practice any encountered sunspot shape Σ−1 will lie within
the convex-hull (3) of previously encountered sunspots.

Fig. 2. Example illustrating of the convex-hull (3) of 100 realistic
symmetric shape matrices Σ−1 ∈ R2×2. Axis are azimuth σ11 and
elevation σ22 variances and their covariance σ12.

B. Gradient Estimator
Since the parameters of (2) are unknown, its gradient

∇ logP (y) is estimated from real-time power measurements
logPk = logP (yk) gathered at yk over time k, creating
the data-set {yk, logPk}. Our RTO architecture is agnostic
to the choice of gradient estimation algorithm, providing
significant flexibility. This means our data can include various
measurements such as temperature, heat flux, light intensity,
or other metrics correlated with power generation.

C. RTO Algorithm
The RTO iteratively finds the optimal alignment r⋆ using

gradient ascent which has the state-space dynamics

zk+1 = zk + F∇ logP (yk) (4a)
r̂k = zk (4b)

where the RTO state zk = r̂k is the current estimate r̂k of r⋆

supplied to the heliostat rk = r̂k. For notational simplicity, we
will use rk to refer to these three equivalent signals. The RTO
input is the gradient ∇ logP (yk) at yk. Since the logarithm
of (2) is concave, the power is maximized when ∇ logP = 0.

The objective of this paper is to tune the RTO (4) gain
F ∈ R2×2. Since the RTO is a purely integral controller, it
must be carefully tuned to prevent instability and ensure fast
convergence to r⋆. This issue is exacerbated by the presences
of the static nonlinear function (2) in the closed-loop, as shown
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in Fig. 1. Additionally, we need to consider the parametric
uncertainty (3) of Σ−1, which can negatively effect stability
and performance. This paper investigates the tuning of the gain
F to provide exponential stability, minimize alignment time,
and ensure robustness.

D. Control Objectives and Assumptions
This section formally defines the RTO tuning problem and

our assumptions on this problem.

Problem 1. Tune the gain F ∈ R2×2 of the RTO (4) to achieve
the following control objectives:
(a) Stabilize the closed-loop system shown in Fig. 1.
(b) Ensure that yk converges yk → r⋆ to the optimal r⋆.
(c) Minimize the settling-time to reach the optimal r⋆.
(d) Ensure robustness to the parametric uncertainty (3).

Our analysis is based on the following assumptions.

Assumption 1.
(a) The heliostat dynamics are Schur stable and have identity

steady-state gain C(I −A)−1B = I .
(b) The intensity of light across the sunspot has a Gaussian

distribution (2).
(c) The gradient ∇ logP (yk) is estimated without error.
(d) The shape matrix Σ−1 belongs to the convex-hull (3).

Assumption 1(a) is reasonable since the heliostats are con-
trolled by an inner-loop controller that points the heliostats
in the desired reference direction. Assumption 1(b) is con-
sistent with experimental observations of the sunspot profile
for heliostats with a single facet. However, errors in facet
installation could result in multiple peaks in the sunlight
intensity. Although Assumption 1(c) is unrealistic in practice,
it was made so that our analysis can focus on the challenge of
tuning F for convergence and robustness. This is a reasonable
assumption since CSP plants tend to be well instrumented due
to their expense in commissioning. Due to the ability to use
many sensors, such as multiple thermocouples and millions of
pixels in sunspot images, as well as a relatively large window
to gather measurements due to the slow dynamics, we are
typically estimating the gradient from millions of data-points.

III. OPTIMAL TUNING OF THE RTO
In this section, we describe conditions on the gain F so that

the RTO algorithm maximizes power, minimizes settling-time,
and provides robustness to uncertainty.

A. Linearity of Closed-loop Dynamics
Our key insight is that the nonlinear system depicted in

Fig. 1 is equivalent to a fully linear system under Assump-
tion 1(d) since ∇ logP = −Σ−1(yk − r⋆) of the Gaussian
log power distribution (2) reduces to an uncertain linear gain
−Σ−1 acting on yk and r⋆. Thus, the three nonlinear blocks
in Fig. 1 (the power function (2), the logarithm logP , and
gradient ∇ logP ) can be replaced by a linear gain block as
shown in Fig. 3. This allows us to treat Σ−1 as an uncertain
linear gain and r⋆ as a disturbance.

Plant

r∗

-Σ−1
Open-loop yk

FIntegrator

-Σ−1(yk − r∗)

δrk

r

Fig. 3. Reduction of closed-loop block diagram in Fig. 1. Resulting
closed-loop system is fully linear, but with uncertain gain Σ−1 and
unknown optimal reference r⋆.

For the linear system shown in Fig. 3, the dynamics of the
closed-loop system have the state-space realization[

xk+1

rk+1

]
=

[
A B

−FΣ−1C I

] [
xk

rk

]
+

[
0

FΣ−1

]
r∗ (5)

obtained from (1), (4), and ∇ logP (y) = −Σ−1(y− r⋆). The
closed-loop state is comprised of xk and rk = zk.

B. Condition for Optimal Pointing Alignment
In this section, we show that the equilibrium of (5) in

Fig. 3 corresponds to r⋆ of the heliostat y∞ = r⋆ through
the following proposition.

Proposition 1. Let Assumption 1 hold. Then, for any F ̸= 0,

(x∞, r∞) = ((I −A)−1Br∗, r∗) (6)

is the equilibrium of the system.

Proof: The equilibrium states of the heliostat x∞ and
RTO r∞ satisfy the equilibrium condition[

x∞
r∞

]
=

[
A B

−FΣ−1C I

] [
x∞
r∞

]
+

[
0

FΣ−1

]
r∗

This produces the solutions x∞ = (I − A)−1Br∞ and
FΣ−1C(I−A)−1Br∞ = FΣ−1r⋆. Since C(I−A)−1B = I
by Assumption 1(a), this simplifies to FΣ−1r∞ = FΣ−1r⋆.
Thus, for F ̸= 0, we have r∞ = r⋆.

Proposition 1 shows that any F ̸= 0 satisfies control
objective 1(b).

C. Convergence to Optimal Pointing Alignment
In this section, we show that there exists a F that stabi-

lizes (5) to establish the feasibility of optimizing F .

Lemma 1. Let Assumption 1 hold. Then, there exists a F ⪰ 0
such that the equilibrium (6) is stable.

The proof of Lemma 1 is provided in [1]. Lemma 1 shows
that there exists a F ⪰ 0 that satisfies control objective 1(a).
The proof of Lemma 1 is constructive, using the small-gain
theorem to produce F = 2

∥P̃∥2

H∞+2
Σ. However, there are two

issues with this gain. First, as we will illustrate in Section IV,
this gain is conservative, producing slow convergence to r⋆.
In the next section, we will present a method for tuning F
to improve settling-time. Second, this gain depends on the
unknown parameter Σ−1. In Section III-E, we will show how
to design F for robustness to Σ−1. Nonetheless, Lemma 1
establishes that the RTO tuning problem is always feasible.
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D. Tuning the RTO to Minimize Alignment Time
In this section, we pose the tuning of the gain F to minimize

alignment time as an LMI where Σ is known. This will be
extended to the uncertain case in the sequel. The closed-loop
dynamics (5) can be factorized around F to produce

xk+1 =

([
A B
0 I

]
+

[
0
I

]
F
[
−Σ−1C 0

])
xk. (7)

Thus, the closed-loop dynamics (5) can be re-interpreted as
output feedback with the open-loop state-space realization[

Â B̂

Ĉ 0

]
=

 A B 0
0 I I

−Σ−1C 0 0

 (8)

The following lemma adapts the output feedback LMIs
from [2] to tune the exponential convergence rate α provided
by RTO gain F .

Lemma 2. Let Assumption 1 hold and let Σ be known. If
the scalar α ∈ [0, 1), symmetric positive definite matrix S ∈
R6×6, and matrices G ∈ R6×6, V ∈ R2×2, and U ∈ R2×2

satisfy the LMI[
α(G+GT − S) (ÂG+ B̂UĈ)T

(ÂG+ B̂UĈ) S

]
⪰ 0 (9a)

and
V Ĉ = ĈG (9b)

then the RTO gain
F = UV −1 (9c)

exponentially stabilizes the closed-loop system (5).

Proof: We will show closed-loop stability using a
quadratic Lyapunov function V (x) = xTPx where P =
S−1 ≻ 0. We will show that (9) implies the exponential
stability condition ∆V (xk) = xT

k+1Pxk+1 − αxT
k Pxk ≤ 0.

Substituting FV = U and V Ĉ = ĈG from (9c) and
(9b) respectively into the LMI (9a) and using the condition
GTS−1G ⪰ GT +G− S from [2], we obtain[

α(GTS−1G) GT (Â+ B̂F Ĉ)T

(Â+ B̂F Ĉ)G S

]
⪰ 0

which can be re-written as[
GT 0
0 I

] [
αS−1 (Â+ B̂F Ĉ)T

(Â+ B̂F Ĉ) S−1

] [
G 0
0 I

]
⪰ 0.

Since I ⪰ 0 and G is full-rank, this matrix is positive semi-
definite if and only if[

αS−1 (Â+ B̂F Ĉ)T

(Â+ B̂F Ĉ) S

]
⪰ 0

Taking the Schur complement and substituting P = S−1 ≻ 0,
the LMI above produces the Lyapunov inequality

αP − (Â+ B̂F Ĉ)TP (Â+ B̂F Ĉ) ⪰ 0

Pre and post multiplying by the closed-loop state x̂k =
(xk, rk) produces the Lyapunov decrease condition

∆V (x̂k) = x̂T
k (Â+ B̂F Ĉ)TP (Â+ B̂F Ĉ)x̂k −αx̂T

k Px̂k ≤ 0

which implies that the closed-loop system (5) is exponentially
stable with decay rate α.

Lemma 2 provides a convex characterization of gains F =
UV −1 that exponentially stabilize (5). The exponential decay
factor α ∈ [0, 1) ⊂ R can be interpreted as the slowest
pole of (5) and determines the rate at which the RTO drives
the heliostat to the optimal r⋆. This convergence rate can be
optimized using the following optimization problem

min α2 (10a)
s.t. S ≻ 0, (9). (10b)

Although the optimization problem (10) is non-convex in both
α and S, we can use a line-search to iteratively optimize α.
Therefore, Lemma 2 and (10) satisfy control objective 1(c).

It is tempting to simplify the tuning problem (9) by setting
G = S. However, as the following proposition shows, this
simplification is infeasible.

Proposition 2. If G = S then α = 1 and F = 0 is the only
feasible solution of (9).

Proof: Consider partitioning the Lyapunov matrix S into

S =

[
S11 S12

ST
12 S22

]
≻ 0

where the partitions S11 and S22 correspond to the plant and
RTO dynamics, respectively, and S12 corresponds to the cou-
pling in the closed-loop dynamics (5). Using the substitutions
BUC = BFCS from the proof of Lemma 2, the Schur
complement of (9a) with G = S is

0 ⪯ αS − (Â+ B̂F Ĉ)S(Â+ B̂F Ĉ)T =[
∗ ∗
∗ (α− 1)S11 + FCS12 + (FCS12)

T − FCS11(FC)T

]
where the terms ∗ are inconsequential for this proof.
From (9b), we have [V Σ−1C, 0] = [Σ−1CS11, CS12], which
implies that CS12 = 0 since Σ−1 is positive definite.
Thus, (9a) holds for G = S if and only if the inequality
FCS11C

TFT ⪯ (α − 1)S11 holds i.e. the positive semi-
definite matrix FCS11C

TFT ⪰ 0 must be less than or equal
to the negative semi-definite matrix (α − 1)S11 ⪯ 0 where
α ≤ 1 and S11 ≻ 0. This can only hold if these matrices are
zero i.e. α = 0 so that (α − 1)S11 = 0 and F = 0 so that
FCS11C

TFT = 0.
Proposition 2 demonstrates the necessity of optimizing over

the matrix G ̸= S in Lemma 2. A straightforward corollary
of Proposition 2 is that Lyapunov function requires non-zero
coupling S12 = ST

21 ̸= 0 between the heliostat and RTO
dynamics. Intuitively, this is necessary since the heliostat state
xk will diverge xk ̸→ x∞(rk) from its reference dependent
equilibrium x∞(rk) when the RTO is aggressively converging
to its equilibrium rk → r⋆. Likewise, the reference may
diverge to drive the heliostat state closer to equilibrium. The
coupling S12 = ST

21 ̸= 0 in the Lyapunov matrix S accounts
for the interaction between the heliostat and RTO dynamics.

E. Tuning the RTO for Robustness

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2024.3496814

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Sandia National Laboratories. Downloaded on November 13,2024 at 17:10:53 UTC from IEEE Xplore.  Restrictions apply. 



For robustness, we need to tune F to stabilize (5) for all
shape matrices Σ−1 contained in the uncertainty set (3). The
following theorem ensures robust exponential stability.

Theorem 1. Let Assumption 1 hold. If the scalar α ∈ [0, 1),
symmetric positive definite matrix S ∈ R6×6, and matrices
Gi ∈ R6×6, V ∈ R2×2, and U ∈ R2×2 satisfy the LMIs[

α(Gi +Gi
T − S) (ÂGi + B̂UĈi)

T

(ÂGi + B̂UĈi) S

]
⪰ 0 (11a)

and
V Ĉi = ĈiGi (11b)

for i = 1, . . . , N , where Ĉi =
[
Σ−1

i C 0
]
, then the RTO

gain (9c) exponentially stabilizes the closed-loop system (5)
for all Σ−1 in the set (3).

Proof: Consider the LMIs (11a) for the vertices Σ−1
i of

the uncertainty set (3)[
α(Gi +Gi

T − S) (ÂGi + B̂UĈi)
T

(ÂGi + B̂UĈi) S

]
⪰ 0.

Following similar arguments as the proof of Theorem 2, the
matrix above is positive semi-definite if and only if[

αS−1 (Â+ B̂F Ĉi)
T

(Â+ B̂F Ĉi) S

]
⪰ 0.

By definition, any shape matrix Σ−1 in the convex-hull (3)
can be parameterized as Σ(ξ)−1 =

∑N
i=1 ξiΣ

−1
i where Σ−1

i

are the vertices of (3) and ξi ≥ 0 and
∑N

i=1 ξi = 1. Applying
the convex combination ξ to the inequality above produces

N∑
i=1

ξi

[
αS−1 (Â+ B̂FΣ−1

i Ĉ)T

Â+ B̂FΣ−1
i Ĉ S

]

=

[
αS−1

(
Â+ B̂FΣ(ξ)−1Ĉ

)T(
Â+ B̂FΣ(ξ)−1Ĉ

)
S

]
⪰ 0

for the parameterized element Σ(ξ)−1 of the convex-hull (3).
Taking the Schur complement and substituting P = S−1 ≻ 0,
we obtain the Lyapunov inequality

αP − (Â+ B̂FΣ−1Ĉ)TP (Â+ B̂FΣ−1Ĉ) ⪰ 0

which holds for any shape matrix Σ−1 in the convex-hull (3).
Thus, the closed-loop system is exponentially stable with
decay rate α for all Σ−1 contained in the set (3).

Theorem 1 shows that if the gain F satisfies (11) then it
will satisfy control objective 1(d). The conditions (11) exploit
convexity to reduce the infinite number of constraints imposed
by the uncertainty set (3) to a finite number of LMIs.

IV. SIMULATIONS AND RESULTS

In this section, we will compare convergence rates of the
optimized F with the conservative gain presented in Lemma 1
and the robustness of F tuned using (11) with non-robust
optimization-based tuning (9).

A. Numerical Details
In this section, we numerically define the parameters used

in the simulations.

1) Heliostat Dynamics: The heliostat dynamics (1) are mod-
eled by the transfer matrix

H(s) =

[
Haz,az(s) Haz,el(s)
Hel,az(s) Hel,el(s)

]
where azimuth and elevation dynamics are uncoupled
Haz,el(s) = Hel,az(s) = 0. The dynamics Haz,az(s) and
Hel,el(s) are second-order with transfer functions

Hi(s) =
ωn

2

s2 + 2ζωns+ ωn
2 + ωn

2

for both azimuth i = az, az and elevation i = el, el, where
ζaz = 1.1, ζel = 1.05, ωn,az = 1

10 , and ωn,el = 1
20 . Since

ζaz > ζel = 1.05 > 1, the dynamics are over-damped,
reflecting the typical design of the inner-loop servos on the
heliostats. The natural frequencies ωn were chosen to represent
the typical settling times observed for the heliostats moving
in each direction. The values ζ and ωn differ between each
direction to simulate possible differences between the azimuth
and elevation angle transfer functions. The heliostat model
H(s) was converted into a discrete-time state-space with
sample period 6 seconds. For each simulation, r0 ̸= r⋆ is the
alignment provided by the operator. However, this alignment
is non-optimal due to uncertainty about the heliostat position
and encoder errors.

Fig. 4. Oblong Power Distribution. This figure shows the power intensity
P (y) at a given yaz and yel.

2) Power Distributions: The power distribution in Fig. 4 is

used to simulate the RTO algorithm, where Σ =

[
10 4
4 5

]
is

used to simulate the RTO algorithm. r⋆ = (0, 0) and maximum
power intensity P (r⋆) = 100% are known in order to validate
the RTO algorithm. These choices are made without loss of
generality to ensure the clarity of the plots. In practice, r⋆

and P (r⋆) will be unknown.
3) Gradient Estimator: For our simulations, a batch least

squares (BLS) algorithm was used to estimate ∇ logP (yk).
Using the first-order Taylor series expansion logPi ≈
logP (yk) + ∇ logP (yk)

T (yi − yk) = θTϕi where θ =
(logP (yk),∇ logP (yk)) is the parameter vector and ϕi =
(1, yi − yk) is the regressor vector. The parameters θ are
estimated using the BLS estimator θ̂ = (ΦΦT )−1ΦP where
Φ =

[
ϕ1 ... ϕN

]
is the batch regressor matrix and P =
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[
P1 ... PN

]T
is the batch output vector with N mea-

surements. ∇ logP (yk) is pulled from the vector θ̂. In the
simulations, ∇ logP (yk) was estimated using 10 sensors in a
circular configuration with radius 0.1 around each yk.

4) RTO design: The gain F of the controller (4) used in
the next section was calculated using Σ−1 from the power
distribution in Fig. 4 and Theorem 2. The computation was
performed in 1.668338 seconds using the MATLAB package
Yalmip with the SDPT3 solver. This solver was used to solve
the SDP problem (10) where (9a) ∈ R12×12. The optimal
α = 0.9999999, which is the smallest value for which (10) is
feasible, was found via line-search.

Fig. 5. Simulations with Conservative (red) and Theorem 2 (blue)
gains. These simulations shows (yaz, yel) versus time (top and middle,
respectively) and P (y) versus time (bottom).

5) Simulations: Fig. 5 shows the simulation results for
the nonlinear closed-loop system shown in Fig. 1 using the
conservative gain suggested by Lemma 1 (left) and the gain
from Theorem 2 (right). Fig. 4 shows the distribution (2) used
in these simulations.

Fig. 5 shows the time-varying yk of the heliostat (1) using
the conservative gain from Lemma 1 and the gain from
Theorem 2. For each simulation, yk converges to r⋆ yk →
rk → 0. In Fig. 5, we see oscillator closed-loop behavior due
to the interaction of the dynamic systems (1) and (4). This
shows that this is not a simple gradient ascent problem and
justifies the need for careful analysis of the non-trivial closed-
loop dynamics. Fig. 5 also shows that the power Pk = P (yk)
converges Pk → 100% to the maximum power P̄ = 100%.
The heliostat converged to the optimal alignment in 2 minutes
for the optimized gain, but 9 minutes for the conservative gain.

These simulations empirically validate Proposition 1 and
Lemma 1. The simulations also empirically validate Lemma 2,
proving the Lemma 2 F stabilizes the closed-loop system in
Fig. 1 and settles faster than the conservative Lemma 1 gain.

Fig. 6 shows the robust simulation results for the nonlin-
ear closed-loop system shown in Fig. 1 comprised of the
heliostat (1), Gaussian power distribution (2), and RTO (4).
For these simulations, 25 different shape matrices Σ−1 were
randomly drawn from the uncertainty set (3). Then, each Σ
was simulated using the robust gain and non-robust gain with
the same initial conditions. Fig. 6 show the alignment yk of
the heliostat (1). For each of the 25 power distribution (2), the
alignment yk converges yk → rk → r⋆ = 0 to the optimal

Fig. 6. Robust Simulations with Robust (blue) and Non-robust (red)
gains. This simulation shows (yaz, yel) versus time (top). The simula-
tion also shows P (y) versus time (bottom).

r⋆ = 0. Fig. 6 shows that the power Pk = P (yk) converges
Pk → P̄ = 100% to the maximum power P̄ = 100% for each
power distribution.

These simulations empirically validate Lemma 1 by show-
ing a reduction in alignment time using the optimized F .
Furthermore, these simulations empirically demonstrate ro-
bustness to the uncertainty (3) proven in Theorem 1; for each
random Σ−1, the optimized F ensured robust convergence.
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