

U.S. Department of Energy Heliostat Consortium for **Concentrating Solar-Thermal Power**

HELIOCOMM: A Resilient Wireless Heliostats Communication System Dr. Eirini Eleni Tsiropoulou, Md Sadman Siraj, Aisha B Rahman heliostat field

conceptional design • components

Univ of New Mexico RFP 38488-002 HELIOCOMM System Overview

- Dynamic **clustering** of the heliostats based on their topology and networking characteristics
- Identification of the **cluster-head** in each cluster by additionally considering the heliostats' energy availability
- Entropy-based routing accounting for the heliostats' energy availability and the network traffic in order to guarantee minimum end-to-end latency constraints
- Joint maximization of each heliostat's energy efficiency and minimization of its end-to-end latency
- Intelligent bandwidth splitting in the access and backhaul communication links at each clusterhead following the principles of the Integrated Access and Backhaul (IAB)-based technology
- Two-stage optimization approach at the access and the backhaul links to determine the optimal transmission power of each heliostat to achieve its Quality of Service (QoS) prerequisites, as defined by the Quantified Performance Targets (QPTs)

Univ of New Mexico RFP 38488-002 HELIOCOMM System Overview

Univ of New Mexico RFP 38488-002

Wireless Communication Standards and QPTs

- HELIOCOMM system tests several wireless communications protocols in different ISM bands
 - 902-928 MHz, e.g., IEEE 802.15.4 (Zigbee, 6LoWPAN)
 - 2400-2483 MHz,
 - 5150-5825 MHz, e.g., IEEE 802.11ax (Wi-Fi 6E)
- Testing in terms of their appropriateness with respect to
 - transmission distance,
 - power consumption,
 - achievable data rates,
 - flexibility of modulation and multiple access techniques
- QPTs are provided as input
 - end-to-end latency,
 - packet error probability,
 - packet losses,
 - energy consumption,
 - transmission power,
 - energy efficiency,
 - network reconfiguration and routing setup time

conceptional design

components

integration •

heliostat field

•

Univ of New Mexico RFP 38488-002 Clustering and Cluster-head Selection

- Artificial intelligent (AI) based heliostats clustering and cluster-head selection
 - Q-learning-inspired approach
 - Distance and communication channel characteristics (as measured by the Received Signal Strength Indicator – RSSI) are exploited to define the probability of two heliostats belonging in the same cluster.
- Q-learning-inspired algorithm enables each heliostat that acts as a Reinforcement Learning (RL) agent to choose to be connected with another heliostat and form a cluster, i.e., actions
- To balance the RL algorithm's exploration and exploitation processes and improve its computational complexity to converge to a stable clustering in the overall heliostats field, several variations of ε-greedy strategies will be tested
- Cluster-head selection for each cluster is performed following the closeness centrality approach and the heliostats' weighted sum of distance and communication channel gain from other heliostats belonging to the same cluster, as well as personal energy availability.

Univ of New Mexico RFP 38488-002 Entropy-based Routing

- Entropy-based routing among the cluster-heads to ultimately forward the information to the central station for further processing to support the autocalibration and closed-loop controls in the heliostats field
- Dynamically determines the optimal routes accounting for the cluster-heads energy availability and network traffic
- The cluster-heads act as IAB nodes collecting the information from the heliostats belonging to their own cluster through the access link with a one-hop connection and forwarding in a wireless multi-hop manner in the backhaul link to the central station, i.e., IAB donor.

Univ of New Mexico RFP 38488-002 Integrated Access and Backhaul Technology

- Two-stage optimization problem is solved at each IAB node to determine:
 - optimal transmission power
 - intelligent bandwidth splitting in the access and backhaul links
 - <u>Goal</u>: joint <u>maximization of the energy efficiency and minimization of the end-to-</u> <u>end latency</u> experienced by all heliostats in its cluster
- The two-stage optimization problem is split between the access and the backhaul in order to ultimately optimize the experienced energy efficiency of each cluster-heliostat, i.e., cluster-node
- Towards minimizing the end-to-end latency experienced in each route, information about the transmission power levels and the bandwidth splitting in the access and backhaul links should be exchanged among the IAB nodes belonging to the same route
- The multiple two-stage distributed optimization problems within each route are solved in parallel and information is exchanged among the IAB nodes based on beacon signals

Efficiency && Min End-to-End Latency Backhaul

Dynamic Spectrum

Management

Max Energy

Intelligent Bandwidth Splitting && Interference Mitigation

7

optimal tranmission power && intelligent bandwidth splitting ratio between access and backhaul

Design of IAB-based network & optimization of energy efficiency and latency

- Design of a distributed energy efficiency optimization problem satisfying minimum latency requirements for access heliostats as well as heliostats operating as IAB nodes in the IAB architecture.
- Two-variable constrained optimization problem in the backhaul level where IAB nodes determine the optimal bandwidth splitting ratio and uplink transmission power.
- Single-variable constrained optimization in the access level for access heliostats to determine the optimal uplink transmission power.
- Collection KPIs for networking metrics based on available wireless communication modules and realistic requirements for wireless heliostats operation:
 - heliostat's maximum affordable transmission power*,
 - heliostat's receiver sensitivity*,
 - end-to-end latency constraints considering closed-loop autocalibration and nonclosed-loop autocalibration.
- Prepared and submitted a paper to the IEEE IT Professional Magazine presenting the HELIOCOMM System, and to ASME ES, HelioCon 2024 workshop presenting our initial communication latency findings.

*based on the technical characteristics of indicative wireless modules TI CC1312R and TI CC1352R

Testing of IEEE 802.11ax and IEEE 802.15.4 under the IAB-based network

- Characteristics of the standards IEEE 802.11ax and IEEE 802.15.4 are employed during the simulation of the IAB network in the CSP field.
- Under the standards, the optimization problem is solved in order to analyze the resulting KPI values.

Dynamic spectrum management in the access and wireless backhaul

- Solving the optimization problem, spectrum is intelligently split and allocated to the access and the backhaul network.
- Based on the allocated spectrum and the uplink transmission power and end-to-end latency constraints, the achieved data rates are derived and analyzed.
- The ultimate goal is to maximize the energy efficiency while satisfying the sub-second end-to-end latency constraints (250 msec) to support closed-loop autocalibration functionalities.
- For the heliostats that do no perform closed-loop autocalibration, the end-to-end latency constraint is more relaxed and currently set to 2 sec.
- Tested the formulated optimization problem in a small-scale heliostat field following the topology of NSTTF@ SNL.

- NSTTF@SNL Topology
 - Implementation of segmentation in a small-scale heliostat field following the Sandia's NSTTF topology.
 - Access Points (APs) play the role of IAB nodes (APs to be replaced with cluster-heads in the future)
 - Application of Dijkstra's algorithm for the considered APs in the NSTTF topology (Dijkstra's algorithm to be replaced with entropy-based routing in the future).
 - Solving the optimal bandwidth splitting and transmission power problems with the Max. Energy Efficiency && Min. Latency algorithm.
 - Evaluation of the simulation results from the IAB-integrated Max EE && Min Latency wireless communication system.
- Baseline NREL Topology
 - Determination of segment-heads using closeness centrality and energy availability based on the collected energy harvest dataset.
 - Determination of CLA segment groups that can simultaneously perform closed-loop autocalibration while ensuring minimal interference.
 - Solving the optimal bandwidth splitting and transmission power problems with the Max. Energy Efficiency && Min. Latency algorithm.
 - Evaluation of the simulation results from the IAB-integrated Max EE && Min Latency wireless communication system. Simulation was performed for one-day timeframe which included both closed-loop autocalibration and non-closed-loop autocalibration.

NSTTF@SNL

HELIOCON Baseline

11

Emulation-based experiments

- Implementation of the Sandia's NSTTF topology as the test topology with wired connections having multiple segments and IAB nodes (can be APs or segment-heads) for benchmarking purposes.
- Development of custom radio and radio medium in OMNET++ to account for the novel IAB network characteristics.
- Integration of the **3GPP wireless path loss** model used in the Python simulations (currently, OMNET++ do not offer 3GPP path loss modeling).
- Establishing the access network with access heliostats and the backhaul network with the IAB nodes in OMNET++ to have the overall IAB architecture.
- Linking the parameters from Python simulation such as access data rate, backhaul data rate, access power and IAB node power as input to the OMNET++ experiment.

U.S. Department of Energy Heliostat Consortium for **Concentrating Solar-Thermal Power**

Simulation and Emulation NSTTF@SNL Topology conceptional design components

heliostat field

Energy efficiency optimization for <u>IAB nodes</u> within sub-second latency

• The optimization problem of the IAB nodes is formulated as follows.

$$\max_{\omega_{c},P_{N_{c}}} EE_{N_{c}}(\omega_{c},P_{N_{c}}) = \frac{R_{N_{c}}^{BH}}{\sum_{\forall h \in \mathcal{H}_{c}} P_{h_{c}} + \sum_{\forall c' \in \mathcal{N}_{N_{c}}^{BH}} P_{N_{c'}} + P_{N_{c}}}$$
s.t. c1: 0 ≤ ω_{c} ≤ 1
c2: $P_{N_{c}} \leq P^{max}$
c3: $P_{N_{c+1}}^{S} \geq P^{S}$
c4: $t_{h_{c}}^{E2E} \leq t^{max}, \forall h_{c} \in \mathcal{H}_{c}$

• The resulting data rate achieved at the backhaul by IAB node N_c is given as:

$$R_{N_c}^{BH} = (1 - \omega_c) B_c \log_2 \left(1 + \frac{g_{N_c} P_{N_c}}{\sum_{\forall i \in \mathcal{I}_{\mathcal{N}_c}} g_i P_i + (1 - \omega_c) B_c N_0} \right)$$

Energy efficiency optimization for access heliostats within sub-second latency

• The single-variable optimization problem of the access heliostats is formulated as follows:

$$\max_{P_{h_c}} EE_{h_c}(P_{h_c}, P_{-h_c}) = \frac{R_{h_c}^{AC}}{P_{h_c} + P_c}$$

$$c1: P_{h_c} \leq P^{max}$$

$$c2: P_{h_c,N_c}^s \geq P^s, \forall h_c \in \mathcal{H}_c$$

$$c3: t_{h_c}^{E2E} \leq t^{max}, \forall h_c \in \mathcal{H}_c$$

• The resulting data rate achieved at the access network by heliostat h_c is given as:

$$R_{h_c}^{AC} = \omega_c B_c \log_2 \left(1 + \frac{g_{h_c} P_{h_c}}{\sum_{\forall i \in \mathcal{I}_{h_c}} g_i P_i + \omega_c B_c N_0} \right)$$

Energy efficiency optimization within sub-second latency

• The corresponding transmission delay experienced by heliostat h_c with the achieved data rate:

$$t_{h_{c}}^{E2E} = t_{h_{c}}^{AC} + t_{h_{c}}^{BH} + t_{N_{c+1}}^{BH} + \sum_{\forall n \in \{N_{c+2}, \dots, \left|\mathcal{N}_{N_{c}}^{*}\right|\}} t_{N_{n}}^{BH} \le t^{max}, \forall h_{c} \in \mathcal{H}_{c}$$

• Where, the delay experienced in the access network and the backhaul network of its own segment is given by

$$t_{h_c}^{AC} = \frac{D_{h_c}}{R_{h_c}^{AC}} \text{ and } t_{h_c}^{BH} = \frac{D_{h_c}}{\frac{R_{h_c}^{AC}}{\sum_{\forall h_c \in \mathcal{H}_c} R_{h_c}^{AC} + \sum_{\forall c' \in \mathcal{N}_{N_c}^{BH}} R_{N_c'}^{BH}}}, \text{ respectively.}$$

• The rest of the term $t_{N_{c+1}}$ and $t_{N_n}^{BH}$ capture the latency experienced at the backhaul of the subsequent segmentheads within the route of data transmission from heliostat h_c to the CS, and are given as

conceptional design components integration mass production heliostat field

Univ of New Mexico RFP 38488-002 Segmentation

Segmentation in NSTFF@SNL topology

- Heliostats are grouped into five segments and each segment is assigned an AP acting as the IAB node (we initiate our experiments with APs, which will be substituted by segment-heads, i.e., heliostats' wireless module).
- The segmentation is however, performed in a simplistic way based on balancing the number of heliostats per segment and the proximity of the heliostats in a segment to the nearest IAB Node.
- Based on this segmentation, we determine 5 segments with the following distributions: Segment 1 40, Segment 2 and Segment 3 43, Segment 4 and Segment 5 46 heliostats.
- 3GPP path loss model following the <u>ETSI standard</u> is used to determine the path loss between a heliostat and its corresponding AP.
- The heliostats are identified with a unique ID based on the channel condition (path loss) between the heliostat and the corresponding IAB Node.

Univ of New Mexico RFP 38488-002 Routing

Routing in NSTFF@SNL topology

- The optimal route is determined following the **Dijkstra's algorithm** (shortestpath algorithm, meaning lowest cost – not necessarily distance).
- The basis of finding the optimal route, considering all the intermediate IAB nodes, is to establish an end-to-end path to the central station with the **lowest total cost**.
- In this application, the cost is taken to be path loss determined with the 3GPP model and the optimal route is the end-to-end path with the lowest path loss.
- Here, an IAB node can forward the data of its segment to another IAB node and the former IAB node is considered to have a backhaul connection to the latter IAB node.
- Each IAB node is required to allocate its backhaul bandwidth to its associated heliostats as well as to the IAB node(s) connected to its backhaul.

Transmission Power

- Considering the transmission power bound of ٠ the modules TI CC1312R and TI CC1352R, the maximum transmission power is set to 25mW.
- The higher the ID of a heliostat in a segment, ٠ the **higher** is its **channel gain** with the IAB node. This results in a lower transmission power required for a heliostat with higher IDs.
- Due to interference among the simultaneously ٠ transmitting heliostats connected to the same AP, the more the number of heliostats in a segment, the higher the interference, hence, the heliostats transmit with higher power.

Energy Efficiency

• The higher the transmission power, the lower is the achieved energy efficiency. Hence, the downward trend of transmitting power results in an upward trend for the energy efficiency.

Univ of New Mexico RFP 38488-002 **Current State of Research**

Latency

- Any heliostat in a segment whose IAB node uses solely its ٠ backhaul for transmitting the data of its heliostats, i.e., not acting as a relaying AP, performs better in terms of latency as the entire forwarding backhaul link is dedicated to the heliostats of the specific segment.
- Segments 1 and 2 have no backhaul links to relay traffic ٠ coming from other segments, hence, the heliostats in those segments experience **lower latency**.
- Segments 3 and 4 both have backhaul connections, resulting in 43(heliostats)+ 2(backhaul) = 45 total connections and 46(heliostats) + 1(backhaul) = 47 total connections, respectively, resulting in a higher latency for the heliostats in segment 4.

conceptional design heliostat field integration mass production components

Ø

ns.

IAB Node Transmission Power

- In order to transmit the data collected from the heliostats, all the IAB nodes are required to transmit with the maximum transmission power, i.e., 25 mW, as indicated by the hardware specs of the wireless modules (TI <u>CC1312R</u> or TI <u>CC1352R</u>).
- The optimization problem is solved with the constraint of maintaining a received power above or equal to the receiver sensitivity (critical constraint to be able to decode the received signal).

IAB Node Energy Efficiency

- IAB nodes 1 and 2 have higher EE as both the APs only serve the heliostats in the cluster and have no backhaul connections. However, IAB Node 2 has larger number of heliostats in its access compared to IAB Node 1, hence the EE of IAB node 2 is lower than IAB node 1.
- IAB nodes 3 and 4 both have backhaul connections, resulting in 43 (heliostats) + 2 (backhaul) = 45 total connections and 46 (heliostats) + 1 (backhaul) = 47 total connections, respectively, resulting in lower EE.

Backhaul Rates

- The achievable data rates in the backhaul depend on the ٠ channel through which the data propagate.
- In the current topology, the path loss in the channel ٠ between 4 and its next hop destination, i.e., 3 is the maximum, resulting in the lowest backhaul rate.
- In the current topology, the path loss in the channel ٠ between 1 and its next hop destination, i.e., 3 is the second maximum, resulting in the second lowest backhaul rate.
- Given the symmetrical topology, the path loss in the channels between 2 and its next hop destination i.e., 4 and 3 and its next hop destination i.e., 5, have almost equal path loss, resulting in the similar achieved backhaul rate.

Rate

Backhaul

Univ of New Mexico RFP 38488-002 Emulation

OMNET++ Experiments

- Sandia's NSTTF topology is taken as the test topology to perform experiments in OMNET++ as it has a comparatively lower number of heliostats.
- A wired IAB network architecture is established initially for two major reasons.
- Wired networks can be easily and swiftly implemented in OMNET++ to analyze the communication behavior in the field.
- A wired network of the test topology can provide a basis of comparison for the emulation results obtained from the wireless implementation of the test topology.
- Testing of data transmission involves **three stages** explained as follows:
- Uploading: Each access heliostat uploads its data to the assigned Access Point (AP)
- **Concatenating**: Each AP processes and combines all the individual access heliostat data together
- **Forwarding**: Each AP forwards its combined data to the next AP in its route
- The uploading and concatenating stages **all occur in the same timeslot**, but they are represented as discrete events in the OMNET++ visualizations.
- The timeslot for the execution of the forwarding stage can vary from AP to AP since the APs with backhaul connections are required to wait for the backhaul APs to finish executing the forwarding of data.

Univ of New Mexico RFP 38488-002

Emulation

Uploading stage

Univ of New Mexico RFP 38488-002 Emulation

Concatenating stage

Univ of New Mexico RFP 38488-002 Emulation

Forwarding stage

conceptional design

 components
 integration
 mass production
 heliostat field

U.S. Department of Energy Heliostat Consortium for **Concentrating Solar-Thermal Power**

Simulation and Emulation HELIOCON Baseline Topology @NREL

conceptional design

mass production

heliostat field

Univ of New Mexico RFP 38488-002 Segmentation

Segmentation in NREL topology

- Heliostats are grouped into multiple segments to efficiently handle the communication among the access heliostats, IAB nodes (segmentheads) and the central station.
- Segmentation is done in two ways. Firstly, a vertical segmentation is done considering a fixed communication range from the central station. Then, a horizontal segmentation is done on top that based on the angular orientation with respect to the central station.
- Access heliostats within each segment upload their data to the associated segment-head which can forward to the next segmenthead in its route or directly to the central station depending upon the routing.
- Segment-head is selected in a dynamic manner based on:
 - Energy availability
 - Channel gain conditions
 - Communication distance among heliostats belonging to the same segment conceptional design
 components
 integration

mass production

heliostat field

Univ of New Mexico RFP 38488-002 Segment-heads Determination

Segment-heads in NREL topology

- Segment-heads are determined based on the scoring criteria which is a function of the closeness centrality and energy availability.
- Closeness centrality is the average value of a combined function of distance and channel gain.
- Energy availability is the portion of the PV harvested energy remaining after communication operations are executed.
- Each access heliostat within a segment has a score based on the closeness centrality and energy availability and the access heliostat with the highest score is chosen to be the segment-head of the concerned segment.

Univ of New Mexico RFP 38488-002 Segment-heads Determination

Segment-head Selection Process

- A segment s with heliostats denoted by \mathcal{H}_s is considered.
- Segment-head selection process is initiated with the calculation of weights w_{hs} of each heliostat h_s with other heliostats h'_s in the same segment.

$$D(h_s, h'_s) = -\log_2(d(h_s, h'_s))$$
, where $d(h_s, h'_s)$ is the actual **distance** between h_s and h'_s

 $G(h_s, h'_s) = -\log_2(g(h_s, h'_s))$, where $g(h_s, h'_s)$ is the actual **channel gain** between h_s and h'_s

 $DG(h_s, h'_s) = w_D D(h_s, h'_s) + w_G \frac{1}{G(h_s, h'_s)}$, where w_D, w_G are the weights for the distance and channel gain dependent terms respectively $w_{h_s}(h_s, h'_s) = DG(h_s, h'_s), \forall h'_s \in \mathcal{H}_s, h_s \neq h'_s$

• Towards selecting the segment-head *sh_s* of segment *s*, the concept of closeness centrality *CC* is utilized.

$$CC(h_s) = \sum_{\substack{\forall h'_s \in \mathcal{H}_s \\ h_s \neq h'_s}} \left[\frac{w_{h_s}(h_s, h'_s)}{|\mathcal{H}_s| - 1} \right]$$

• The score of heliostat h_s as a function of closeness centrality *CC* and energy availability *E* in the segment *s* is defined as follows:

$$score(h_s) = w_{CC}CC(h_s) + w_E \frac{E(h_s)}{E_s^{max}}$$
, where w_{CC} , w_E are the weights for the CC and E values respectively

• The heliostat with the highest score is the chosen segment-head: $sh_s = \operatorname{argmax}\{score(h_s)\}$

 $\forall h_{s} \in \mathcal{H}_{s}$

Univ of New Mexico RFP 38488-002 Routing

Routing in NREL topology

- The Dijkstra's algorithm enables the determination of an optimal route from each segment-head to other segment-heads in its next hop, terminating at the central station.
- Dijkstra's algorithm ensures that an end-to-end path is determined from each segment-head to the central station.
- The basis for finding the optimal route in Dijkstra's algorithm is to determine the optimal route with the minimum value of the cost ₃₀ function.
- In our application of the Dijkstra's algorithm, the cost function is the path loss between a pair of segment-heads or between a segmenthead and the central station.
- In addition, we also ensure that a segment-head has the central station as the final destination in its optimal route by ensuring that a segment-head only chooses other segment-heads in the segments which are comparatively closer to the central station.

components

conceptional design

33

mass production
 heliostat field

integration

Univ of New Mexico RFP 38488-002 Energy Availability Data

- Energy availability data is analyzed to get the available energy for each day.
- For a given year, a given month and a given day, energy availability data is recorded at an interval of 5 minutes.
- For a single day, energy availability data is found only for the time the heliostats and PV panel are functional.
- The duration of PV panels being function depends on the month being considered and typically ranges from 14 hrs 15 mins (in summer) to 9 hrs 30 mins (in winter).
- The entire dataset is compiled to a file system with the following structure:

Univ of New Mexico RFP 38488-002 Energy Availability Data

- To visualize the dynamic Dijkstra routing based on the closeness centrality and energy availability, a day is chosen from the file system.
- As a representative day, 2020-07-01 is chosen as the PV panels achieve the highest duration (05:05:00 19:15:00) of functionality during this day.

Non-conforming heliostats

- We implemented the max EE && min latency optimization problem on the segmented Heliocon Baseline topology (7683 heliostats).
- We have considered some segments to perform closed loop autocalibration (CLA) such that the total number of heliostats performing CLA is approx. 1000, while all other remaining segments perform no closed loop autocalibration (NCLA).
- The segments performing CLA will use a different communication band from the segments performing NCLA.
- CLA end-to-end (E2E) latency constraint is set to 250ms, NCLA E2E latency constrain set to 2s.
- In such arrangement, we have found out a number of heliostats (approx. 1% of the total number of heliostats in the field) do not meet the latency constraints which are referred to as non-conforming heliostats.
- In attempts to solve the problem, we have further increased the segmentations (trying to imitate our future steps of clustering for Y2).
- Previously we had 54 segments, which has been increased to 108 segments by doubling the number of "pie" divisions which is resulted in no non-conforming heliostats.

Night -- 1 signal/5 mins = 0.003 signal/sec (sps) with 10s latency. No communication, consume the very minimum of the device electronics

No closed-loop-autocalibration (N-CLA) – 1 signal/4999 msec = 0.017 **sps** with 2 sec *latency*

Closed-loop-autocalibration (CLA) – 1 signal/251 msec = 4×10^{-5} sps with 250 msec *latency*

- The need for CLA and NCLA transmissions at different timestamps has been identified to prevent incidents where IAB nodes receive CLA and NCLA packets simultaneously.
- To address this, consideration is given to adjusting the signal transmission frequencies of CLA and NCLA transmissions to prime numbers (251 msec for CLA and 4999 msec for NCLA events).
- During CLA signal transmissions, the NCLA segment heads, will function as relays, as their access networks (NCLA) will be in sleep mode during CLA transmission, and vice versa.
- To accommodate these "relay" IAB nodes, which only serve CLA segments in their backhaul connections during CLA events and vice versa during NCLA events, modifications to the maximization problem of energy efficiency and latency minimization have been concluded.

Grouping of CLA Segments

- To perform closed-loop autocalibration (CLA), we are required to group multiple segments in the heliostats field and all the heliostats within each segment of the group will perform CLA simultaneously.
- The heliostats performing the CLA will operate in a separate frequency band (<u>TI Module page-14</u>) compared to the heliostats not performing CLA (NCLA segments/groups).
- The segments in a CLA group should be chosen in such a way that they do not interfere with each other and so that all the heliostats can achieve the strict CLA time constraint.
- The interference region of a heliostat operating with **Zigbee** protocol is **75 m** on an average. So, the minimum distance among all the segments in a CLA group should be more than 75 m to avoid any associated interferences.

Grouping of CLA Segments – Approach 1

- We start with the segments sequentially from each arc and each segment is allowed to choose another segment from the same arc sequentially to form a group.
- Each of the segments in the first arc form CLA groups in a sequential manner and then we move to the segments in the next arc (towards the edge of the field).
- A segment that has already been included in a CLA group is not considered when another CLA group is formed. So, the algorithm takes the lowest id non-grouped segments from arcs sequentially each time a CLA group must be formed.
- The algorithm terminates when there are no new groups that can be formed.

Grouping of CLA Segments – Approach 1 Outcomes

(a) Total Number of Heliostats in a CLA group: ~ 1000

CLA Group 1 Segment IDs: [0, 81, 2, 25, 64, 100, 4, 18, 46, 76, 102, 12, 97, 22, 89, 41, 71] CLA Group 1 Heliostat Number: 991 CLA Group 2 Segment IDs: [6, 90, 8, 44, 83, 10, 36, 66, 94, 20, 38, 58] CLA Group 2 Heliostat Number: 989 CLA Group 3 Segment IDs: [14, 98, 16, 54, 92, 27, 56, 85, 5, 103, 29, 48, 68, 87] CLA Group 3 Heliostat Number: 990 CLA Group 4 Segment IDs: [23, 91, 34, 3, 65, 93, 11, 28, 47, 77, 96, 13] CLA Group 4 Heliostat Number: 979 CLA Group 5 Segment IDs: [32, 99, 74, 9, 35, 101, 19, 37, 67, 86, 31] CLA Group 5 Heliostat Number: 981 CLA Group 6 Segment IDs: [42, 17, 45, 75, 57, 95, 78, 21, 39, 59, 80, 51] CLA Group 6 Heliostat Number: 929 CLA Group 7 Segment IDs: [52, 1, 26, 55, 84, 30, 49, 69, 88, 61] CLA Group 7 Heliostat Number: 787 CLA Group 8 Segment IDs: [62, 79, 40, 60] CLA Group 8 Heliostat Number: 260 CLA Group 9 Segment IDs: [72, 7, 50, 70] CLA Group 9 Heliostat Number: 256 CLA Group 10 Segment IDs: [15, 73] CLA Group 10 Heliostat Number: 136 CLA Group 11 Segment IDs: [24, 82] CLA Group 11 Heliostat Number: 136 CLA Group 12 Segment IDs: [33] CLA Group 12 Heliostat Number: 68 (a) CLA Group 13 Segment IDs: [43] Groups: 15 \rightarrow CLA Group 13 Heliostat Number: 62 CLA Group 14 Segment IDs: [53] 150 min CLA CLA Group 14 Heliostat Number: 51 Standalones: 4 CLA Group 15 Segment IDs: [63] Less Balanced CLA Group 15 Heliostat Number: 68

(b) Total Number of Heliostats in a CLA group: ~ 600

CLA Group 1 Segment IDs: [0, 81, 2, 25, 64, 100, 4, 103, 13] CLA Group 1 Heliostat Number: 596 CLA Group 2 Segment IDs: [6, 90, 8, 44, 83, 10, 36, 102, 97] CLA Group 2 Heliostat Number: 597 CLA Group 3 Segment IDs: [14, 98, 16, 54, 92, 18, 46, 76, 5] CLA Group 3 Heliostat Number: 599 CLA Group 4 Segment IDs: [23, 91, 34, 3, 65, 93, 27, 71] CLA Group 4 Heliostat Number: 600 CLA Group 5 Segment IDs: [32, 99, 74, 9, 35, 101, 96] CLA Group 5 Heliostat Number: 599 CLA Group 6 Segment IDs: [42, 17, 45, 75, 11, 28, 47, 22, 89] CLA Group 6 Heliostat Number: 591 CLA Group 7 Segment IDs: [52, 1, 26, 55, 84, 19, 37, 41] CLA Group 7 Heliostat Number: 594 CLA Group 8 Segment IDs: [62, 56, 85, 12, 29, 48, 68, 31] CLA Group 8 Heliostat Number: 580 CLA Group 9 Segment IDs: [72, 7, 66, 94, 20, 38, 58, 51] CLA Group 9 Heliostat Number: 595 CLA Group 10 Segment IDs: [15, 73, 57, 77, 95, 21, 40] CLA Group 10 Heliostat Number: 598 CLA Group 11 Segment IDs: [24, 82, 67, 86, 30, 49, 70] CLA Group 11 Heliostat Number: 595 CLA Group 12 Segment IDs: [33, 78, 39, 59, 80, 61] CLA Group 12 Heliostat Number: 430 (b) CLA Group 13 Segment IDs: [43, 87, 69, 50] Groups: $15 \rightarrow$ CLA Group 13 Heliostat Number: 330 CLA Group 14 Segment IDs: [53, 79, 60] 150 min CLA CLA Group 14 Heliostat Number: 217 Standalones: 0 CLA Group 15 Segment IDs: [63, 88] More Balanced CLA Group 15 Heliostat Number: 162

Total Number of Heliostats performing CLA: 7683

conceptional design

components

integration

mass production •

Total Number of Heliostats performing CLA: 7683

heliostat field

Grouping of CLA Segments – Approach 2

- We start with the segments sequentially from the first arc and each segment is allowed to choose another lowest id non-grouped segment from the pies.
- Each of the segments in the arcs form CLA groups in a sequential manner and then we move to the segments in the next arc.
- A segment that has been included in a CLA group is not considered when another CLA group is formed. So, the algorithm takes the lowest id non-grouped segments from the pies sequentially each time a CLA group must be formed.
- The algorithm terminates when there are no new groups that can be formed.

conceptional design

components
integration
mass production

Grouping of CLA Segments – Approach 2 Outcomes

(a) Total Number of Heliostats in a CLA group: ~ 1000 CLA Group 1 Segment IDs: [0, 2, 4, 12, 18, 22, 25, 29, 40, 46, 48, 60, 63, 89, 97] CLA Group 1 Heliostat Number: 983 CLA Group 2 Segment IDs: [6, 3, 5, 13, 19, 26, 30, 37, 41, 49, 54, 61, 66, 68, 80] CLA Group 2 Heliostat Number: 996 CLA Group 3 Segment IDs: [14, 8, 10, 20, 31, 35, 38, 50, 57, 64, 69, 71, 96] CLA Group 3 Heliostat Number: 1000 CLA Group 4 Segment IDs: [23, 9, 11, 21, 28, 34, 39, 47, 51, 59, 65, 77, 91] CLA Group 4 Heliostat Number: 1083 CLA Group 5 Segment IDs: [32, 16, 27, 55, 58, 70, 78, 83, 85, 102] CLA Group 5 Heliostat Number: 771 CLA Group 6 Segment IDs: [42, 17, 44, 56, 79, 84, 86, 103] CLA Group 6 Heliostat Number: 586 CLA Group 7 Segment IDs: [52, 1, 36, 67, 74, 87, 94, 100] CLA Group 7 Heliostat Number: 731 CLA Group 8 Segment IDs: [62, 45, 75, 88, 95, 101] CLA Group 8 Heliostat Number: 496 CLA Group 9 Segment IDs: [72, 7, 76, 92] CLA Group 9 Heliostat Number: 300 CLA Group 10 Segment IDs: [81, 15, 93] CLA Group 10 Heliostat Number: 199 CLA Group 11 Segment IDs: [90, 24] CLA Group 11 Heliostat Number: 85 CLA Group 12 Segment IDs: [98, 33] CLA Group 12 Heliostat Number: 88 CLA Group 13 Segment IDs: [43, 99] CLA Group 13 Heliostat Number: 178 (a) CLA Group 14 Segment IDs: [53] Groups: 16 \rightarrow CLA Group 14 Heliostat Number: 51 CLA Group 15 Segment IDs: [73] 160 min CLA CLA Group 15 Heliostat Number: 67 Standalones: 3 CLA Group 16 Segment IDs: [82] CLA Group 16 Heliostat Number: 69 Less Balanced

(b) Total Number of Heliostats in a CLA group: ~ 600

CLA Group 1 Segment IDs: [0, 2, 4, 12, 18, 22, 25, 29, 41, 63] CLA Group 1 Heliostat Number: 664 CLA Group 2 Segment IDs: [6, 3, 5, 13, 19, 26, 30, 37, 51, 71, 89, 73] CLA Group 2 Heliostat Number: 666 CLA Group 3 Segment IDs: [14, 8, 10, 20, 31, 35, 38, 97, 82] CLA Group 3 Heliostat Number: 662 CLA Group 4 Segment IDs: [23, 9, 11, 21, 28, 34, 40, 91] CLA Group 4 Heliostat Number: 687 CLA Group 5 Segment IDs: [32, 16, 27, 39, 47, 54, 59, 61, 103] CLA Group 5 Heliostat Number: 588 CLA Group 6 Segment IDs: [42, 17, 44, 46, 48, 50, 68, 70] CLA Group 6 Heliostat Number: 599 CLA Group 7 Segment IDs: [52, 1, 36, 49, 64, 66, 69] CLA Group 7 Heliostat Number: 572 CLA Group 8 Segment IDs: [62, 45, 57, 60, 74, 76, 78, 80] CLA Group 8 Heliostat Number: 569 CLA Group 9 Segment IDs: [72, 7, 55, 58, 77, 79, 83] CLA Group 9 Heliostat Number: 545 CLA Group 10 Segment IDs: [81, 15, 56, 84, 86, 88, 102] CLA Group 10 Heliostat Number: 510 CLA Group 11 Segment IDs: [90, 24, 65, 67, 87, 92, 94] CLA Group 11 Heliostat Number: 588 (b) CLA Group 12 Segment IDs: [98, 33, 75, 95, 100] CLA Group 12 Heliostat Number: 425 Groups: 14 \rightarrow CLA Group 13 Segment IDs: [43, 85, 96, 99, 101] 140 min CLA CLA Group 13 Heliostat Number: 443 CLA Group 14 Segment IDs: [53, 93] Standalones: 0 CLA Group 14 Heliostat Number: 165 More Balanced -----

Total Number of Heliostats performing CLA: 7683

Total Number of Heliostats performing CLA: 7683 mponents • integration • mass production • heliostat field

- The heliostat field is divided into **segments** (Y2: development of clusters within segments).
- The access heliostats in a segment transmit data to the segment-head. The segment-head is responsible for forwarding the data collected from the access heliostats to the central station (CS) by following the multi-hop route identified by the Dijkstra's algorithm (Y2: Entropy-based routing to be developed and implemented).
- Segment-head is selected based on an AI-based approach accounting for the heliostats energy availability, channel gain conditions and communication distance among each other.
- We consider a set of segments C = {1, ..., c, ..., |C|}, each segment having a corresponding IAB node (i.e., segment-head) N_c.
- If a segment c performs CLA with end-to-end latency constraint of 250msec, and within its route a subsequent segment c' performs NCLA with end-to-end latency constraint of 2sec, then the problem of heterogeneous latency constraints will arise.
- Solving an optimization problem with two different latency constraints can be computationally expensive, primarily due to the complexity of the problem, the scale of the wireless network topology, and challenges related to signal transmission synchronization.

Energy efficiency optimization for <u>IAB nodes</u>

• The optimization problem of the IAB nodes is formulated as follows.

$$\max_{\omega_{c},P_{N_{c}}} EE_{N_{c}}(\omega_{c},P_{N_{c}}) = \frac{R_{N_{c}}^{BH}}{\sum_{\forall h_{c}\in\mathcal{H}_{c}}P_{h_{c}} + \sum_{\forall c'\in\mathcal{N}_{N_{c}}^{BH}}P_{N_{c'}} + P_{N_{c}}}$$
s.t. c1: 0 ≤ ω_{c} ≤ 1
c2: $P_{N_{c}} \leq P^{max}$
c3: $P_{N_{c+1}}^{S} \geq P^{S}$
c4: $t_{k}^{E2E} \leq t^{max}, \forall k \in \mathcal{H}_{c} \cup \mathcal{N}_{N_{c}}^{BH}$

- $R_{N_c}^{BH}$: achieved data rate of IAB node N_c in the backhaul
- P_{N_c} : transmission power of IAB node N_c in the backhaul
- P_{h_c} : transmission power of access heliostat h_c , $\forall h_c \in \mathcal{H}_c$
- $P_{N_{c'}}, \forall c' \in \mathcal{N}_{N_c}^{\mathcal{BH}}$: transmission power of IAB node/IAB relay connected to the backhaul of IAB node N_c

Energy efficiency optimization for <u>IAB relays</u>

• The optimization problem of the IAB nodes is formulated as follows.

$$\max_{P_{N_{c}}} EE_{N_{c}}(P_{N_{c}}) = \frac{R_{N_{c}}^{BH}}{\sum_{\forall c' \in \mathcal{N}_{N_{c}}^{B\mathcal{H}}} P_{N_{c'}} + P_{N_{c}}}$$

s.t. c1: $P_{N_{c}} \leq P^{max}$
c2: $P_{N_{c+1}}^{s} \geq P^{s}$
c3: $t_{k}^{E2E} \leq t^{max}, \forall k \in \mathcal{N}_{N_{c}}^{BH}$

- $R_{N_c}^{BH}$: achieved data rate of IAB node N_c in the backhaul
- P_{N_c} : transmission power of IAB node N_c in the backhaul
- $P_{N_{c'}}, \forall c' \in \mathcal{N}_{N_c}^{\mathcal{BH}}$: transmission power of IAB node/IAB relay connected to the backhaul of IAB node N_c

Energy efficiency optimization for access heliostats

• The single-variable optimization problem of the access heliostats is formulated as follows:

1

$$\max_{P_{h_c}} EE_{h_c} (P_{h_c}, P_{-h_c}) = \frac{R_{h_c}^{AC}}{P_{h_c} + P_c}$$

$$c1: P_{h_c} \leq P^{max}$$

$$c2: P_{h_c, N_c}^S \geq P^S, \forall h_c \in \mathcal{H}_c$$

$$c3: t_{h_c}^{E2E} \leq t^{max}, \forall h_c \in \mathcal{H}_c$$

- P_{h_c} : transmission power of access heliostat h_c , $\forall h_c \in \mathcal{H}_c$
- $R_{h_c}^{AC}$: achieved data rate of heliostat h_c in the access.

Latency

• The corresponding transmission delay experienced by heliostat h_c with the achieved data rate:

$$t_{h_{c}}^{E2E} = t_{h_{c}}^{AC} + t_{h_{c}}^{BH} + \sum_{\forall n \in \{N_{c+1}, \dots, \left|\mathcal{N}_{N_{c}}^{*}\right|\}} t_{N_{n}}^{BH} \leq t^{max}, \forall h_{c} \in \mathcal{H}_{c}$$

• Where, the delay experienced in the access network and the backhaul network of its own segment is given by

 $t_{h_c}^{AC} = \frac{D_{h_c}}{R_{h_c}^{AC}}$ and $t_{h_c}^{BH} = \frac{D_{N_c}}{R_{N_c}^{BH}}$, respectively.

• The rest of the term capture the latency experienced at the backhaul of the subsequent segment-heads within the route of data transmission from heliostat h_c to the CS.

- The <u>3GPP Pathloss Model</u> consists of two components, i.e., the Line of Sight (LoS) and the Non-Line of Sight (NLoS – due to the multi-path effect).
- The pathloss stemming from both LoS and NLoS events can be calculated by the closed-form equations (derived through real measurements in 3GPP).
- The probability of LoS and NLoS events, given the communication environment and distance can also be determined through the closed-form formula (similarly, through real measurements in 3GPP).
- The **pathlosses depend on** both the **2D distance** (Euclidean distance between x and y coordinates) **as well as 3D distance** (Euclidean distance among x, y, and z coordinates). Hence, as the heliostats move (elevation and/or azimuth angles change, the pathloss changes).

- From the **3GPP pathloss model**, we consider the **Urban-Micro environment** which represents a busy wireless environment.
- The Urban-Micro environment only accounts for $d_{h_c,h_c'}^{2D} \ge 10m$. So, for $d_{h_c,h_c'}^{2D} < 10m$, the 3GPP pathloss model considers the wireless environment as an indoor office environment congested with wireless devices closest possible to the CSP, where heliostats reside close to each other contributing high levels of interference.
- For different environments (Urban-Micro and office) the pathloss calculation varies. The equations are provided in the next slides.

The **LoS** pathloss: ٠

$$PL_{h_{c},h_{c}'}^{LoS} = \begin{cases} 32.4 + 17.3 \log_{10} \left(d_{h_{c},h_{c}'}^{3D} \right) + 20 \log_{10}(f_{c}) \; ; \; d_{h_{c},h_{c}'}^{2D} < 10 \; and \; 1m \; < \; d_{h_{c},h_{c}'}^{3D} < 150m \\ 32.4 + 21 \log_{10} \left(d_{h_{c},h_{c}'}^{3D} \right) + 20 \log_{10}(f_{c}) \; ; \; 10m < \; d_{h_{c},h_{c}'}^{2D} < d_{BP} & \longleftrightarrow \quad \text{LoS} \\ 32.4 + 40 \log_{10} \left(d_{h_{c},h_{c}'}^{3D} \right) + 20 \log_{10}(f_{c}) - 9.5 \log_{10} \left(d_{BP}^{2} + \left(h_{h_{c}'} - h_{h_{c}} \right)^{2} \right) ; d_{BP} < \; d_{h_{c},h_{c}'}^{2D} < 5km & \longleftarrow \quad \text{NLoS} \end{cases}$$

The **NLoS** pathloss: ٠

where $h_E = 1$ for Urban-Micro environment.

$$PL_{h_{c},h_{c}'}^{NLoS} = \begin{cases} max \left(PL_{h_{c},h_{c}'}^{LoS}, 17.3 + 38.3 \log_{10} \left(d_{h_{c},h_{c}'}^{3D} \right) + 24.9 \log_{10}(f_{c}) \right); d_{h_{c},h_{c}'}^{2D} < 10 \text{ and } 1m < d_{h_{c},h_{c}'}^{3D} < 150m \\ max \left(PL_{h_{c},h_{c}'}^{LoS}, 22.4 + 35.3 \log_{10} \left(d_{h_{c},h_{c}'}^{3D} \right) + 21.3 \log_{10}(f_{c}) - 0.3(h_{h_{c}} - 1.5) \right); 10m \le d_{h_{c},h_{c}'}^{2D} < 5km \end{cases}$$
where, f_{c} is the center frequency and d_{BP} is the breakpoint distance defined as $d_{BP} = \frac{4(h_{h_{c}} - h_{E})(h_{h_{c}'} - h_{E})f_{c}}{c}$,

С

• The probability of LoS pathloss If $d_{h_c,a_c}^{2D} < 10m$:

$$Pr_{h_{c},h_{c}'}^{LoS} = \begin{cases} 1; & d_{h_{c},h_{c}'}^{2D} \leq 1.2m \\ exp\left(-\frac{d_{h_{c},h_{c}'}^{2D} - 1.2}{4.7}\right); & 1.2m < d_{h_{c},h_{c}'}^{2D} < 6.5m \\ exp\left(-\frac{d_{h_{c},h_{c}'}^{2D} - 6.5}{32.6}\right); & 6.5m < d_{h_{c},h_{c}'}^{2D} \end{cases}$$

• Else:

$$Pr_{h_{c},h_{c}'}^{LoS} = \begin{cases} 1; & 10m < d_{h_{c},h_{c}'}^{2D} \le 18m \\ \\ \frac{18}{d_{h_{c},h_{c}'}^{2D}} + exp\left(\frac{-d_{h_{c},h_{c}'}^{2D}}{36}\right) \left(1 - \frac{18}{d_{h_{c},h_{c}'}^{2D}}\right); & 18m < d_{h_{c},h_{c}'}^{2D} \end{cases}$$

• The resulting overall pathloss:

$$PL_{h_c,h_c'} = Pr_{h_c,h_c'}^{LoS}PL_{h_c,h_c'}^{LoS} + \left(1 - Pr_{h_c,h_c'}^{LoS}\right)PL_{h_c,h_c'}^{NLoS}$$

• The pathloss is used to define the communication channel gain as $g_{h_c,h'_c} = \frac{1}{\frac{PL_{h_c,h'_c}}{10^{-\frac{PL_{h_c,h'_c}}{10^{-\frac{10}{10}}}}}$ that is used in the maximization of energy efficiency and minimization of the latency problems.

conceptional design

 components
 integration
 mass production
 heliostat field

Univ of New Mexico RFP 38488-002 Position Updates

Azimuth Angle (Top View)

Required parameters:

- Length of the mirror: *L*
- Angle of azimuth: $\angle a$ [degree]
- Updated position (x', y', z'): $x' = x - \frac{L}{2} \sin(\angle a)$ $y' = y - \frac{L}{2} \cos(\angle a)$

- Completed the simulation for a 24-hour timeframe the max EE && min Latency optimization based on the energy and DNI data.
- In the 24-hour timeframe, the energy and DNI (Direct Normal Irradiance) data are taken as input after every 5 minutes to determine the mode of the heliostats.
- The heliostat can be in one of the two modes: "STANDBY" or "ACTIVE".
 - **STANDBY** mode: Heliostats are not transmitting and only the "*energy*_{standby}" in consumed.
 - ACTIVE mode: Heliostats are transmitting by consuming "energy_{transmission}" and "energy_{active}".
- In ACTIVE mode and for a particular timestamp, heliostats are performing "NCLA" or both "CLA" and "NCLA" depending on the DNI in this timestamp.
- We have logged the battery status of each heliostat at every step of the simulation (at an interval of 5 minutes).
- The simulation was run on CARC (Center for Advanced Research Computing) at UNM with 32 cores and required 37.6 hours.

Simulation Parameters

 $time_interval = 5 * 60 [s]$

- $V_{DDS} = 3.6 [V]$
- $I_{CORE}^{standby} = 2.92 * 10^{-6} [A]$
- $energy_{standby} = V_{DDS} * I_{CORE}^{standby} * time_interval$
- $V_{DDS} = 3.6 [V]$
- $I_{CORE}^{active} = 2.89 * 10^{-3} [A]$
- $I_{PERIPHERAL} = 750.1 * 10^{-6} [A]$
- $V_{SENSOR} = 3.0 [V]$
- $I_{SENSOR} = 808.5 * 10^{-6} [A]$
- $energy_{active} = \left(V_{DDS} * \left(I_{CORE}^{standby} + I_{PERIPHERAL}\right) + V_{SENSOR} * I_{SENSOR}\right) * time_interval$
- $battery_{max} = 324 [KJ] \# 100\%$
- $battery_{min} = 65 [KJ] # 20\%$

Reference: TI CC1312R, Pages: 12, 62

Simulation Parameters (continued)

- Access Heliostats:
 - energy_{transmission} = P_{transmission} * t_h^{AC} [J]
 t_h^{AC} = D_h/R_h^{AC} [s]

Segment-head Heliostats **Access Heliostats** t_h^{AC} D_h D_h t_h^{BH} $D_{h'}$

- Segment head Heliostats:
 - energy_{transmission} = $P_{transmission} * t_h^{BH} [J]$ • $t_h^{BH} = \frac{D_{h+\sum_{\forall h'} D_{h'}}}{R_h^{BH}} [s]$

Simulation Overview

```
timestamp after every 5 mins
energy_{harvested} = energy[timestamp]
energy_{consumed} = [0, ..., 0]
if DNI[timestamp] = 0
    mode = 'STANDBY', energy_{consumed} += energy_{standby}
else
    mode = 'ACTIVE'
 if DNI[timestamp] >= 500
       event = 'CLA', optimization_CLA(event)
       energy_{consumed} += energy_{transmission}^{CLA} + energy_{active}
    event = 'NCLA', optimization NCLA(event)
    energy_{consumed} += energy_{transmission}^{NCLA} + energy_{active}
battery_{status} = battery_{status} + energy_{harvested} - energy_{consumed}
```


- The net energy is the difference between energy harvested and energy consumed.
- If there is positive net energy and the battery status is not $battery_{max}$, the surplus energy harvested is added to the battery to have status set to $battery_{max}$.
- If there is negative net energy, we subtract the net energy from the battery status.

Battery Status

- We also performed battery status analysis for a day where 324KJ corresponds to 100% charge of battery.
- The consumption for the RF module to be active for transmissions and the consumption during the transmission is significantly smaller than the energy harvested.
- We also performed an analysis for a week where energy harvest occurs only on Day 1 and no harvest occurs in the next consecutive 6 days.
- Even in such worst-case, the charge of the battery did not drain enough to drive the heliostats RF module incapable of waking up.

•

components

integration

conceptional design

Maximum Latency

- With the necessary data collected and having modified the problem of energy efficiency maximization and end-to-end latency minimization, we have simulated for a timeframe of 1 day (Jan 01, 2020).
- The day long simulation consisted of heliostats operating in standby modes (when the heliostats do not transmit or receive any data) and active modes (consisting of CLA and NCLA events).
- We have analyzed the achieved end-to-end latency in every possible CLA segment group performing CLA simultaneously and the corresponding NCLA segment group performing NCLA simultaneously.
- We have concluded to not having any heliostats requiring an end-to-end latency more than the latency constraint, both during CLA events and NCLA events, which have latency constraints of 250msec and 2sec, respectively.

Univ of New Mexico RFP 38488-002 Emulation

- We have built our own UDP (User Datagram Protocol)
 Application for the IAB nodes to collect packets from the access network and forward it to the next-hop destination.
- Scalability of wireless networks is limited in <u>network emulators</u> due to the broadcast nature of the communication.
- We are currently working on splitting the entire network into multiple emulation events and work on the log files to compile the results.

Backhaul Network

Access Networks

Univ of New Mexico RFP 38488-002 Next steps

- Testing of wireless communication protocols under the IAB-based network
- Dynamic clustering-based network reconfiguration
- Design an entropy-based routing
- Perform dynamic spectrum management in the access and wireless backhaul
- Implement intra- and inter-cluster interference mitigation
- Perform modeling and simulation
- Perform emulation-based experiments
- Partial HELIOCOMM validation at Sandia National Laboratories (SNL) National Solar Thermal Test Facility (NSTTF)

Thank you!

Eirini Eleni Tsiropoulou

Associate Professor Computer Engineering Chair Director of Recruiting and Admissions Department of Electrical & Computer Engineering University of New Mexico eirini@unm.edu